农业的可持续性强化是全球粮食安全战略的重要组成部分,旨在产生高农作物产量,并产生最小的环境影响(Garnett等人,2013年;联合国,2015年)。未来的粮食系统需要保护或改善土壤健康和生育能力,这是由有效的营养管理为最大程度地减少造成异地污染的土壤损失的基础(Foley等,2011; Steffen et al。,2015; 2015; United;联合国,2019年)。氮(N)引起了人们的关注,因为土壤中的N损失引起了深刻的环境问题,并提出了路线图来提高n在种植中的N使用效率(Udvardi等,2021)。在热带地区,土壤和气候条件下加剧了有效的肥料使用的挑战,因为土壤可以高度风化,肥料养分不那么良好(Baligar&Bennett,1986),温暖的温度加速了土壤有机物和微生物养分的损失(Stanford et and-nutentiers rain。 (Bouwman,1998; Seyfried&Rao,1987)。
ISSN印刷:2617-4693 ISSN在线:2617-4707 IJABR 2024; SP-8(4):133-137 www.biochemjournal.com接收到:12-01-2024接受:19-03-2024 Krishnendu Roy农业学院,斯瓦米Vivekananda大学,巴里克波尔,西孟加拉邦,印度西班牙印度西孟加拉邦,西孟加拉邦,巴拉克锅州斯瓦米维维卡南达大学的库西克·萨曼塔农业学院,斯瓦米·维维卡南达大学,印度西孟加拉邦,西孟加拉邦,印度萨尔巴克港,萨尔巴克港农业,斯瓦米·维维卡南达大学,印度西孟加拉邦,巴拉克港,印度坦格尔·萨尔卡尔农业学院,斯瓦米·维维卡南达大学,巴拉克波尔,西孟加拉邦,印度西孟加拉邦,苏迪普·森格普塔农业学院,斯瓦米斯大学,西班牙,sudip swam swam swam swam swam swam swami vivekananda Vivekananda大学,印度西孟加拉邦Barrackpore
fi g u r e 2实验持续时间是土壤有机碳(SOC)对氮(N)在表层土壤和地下土壤中添加的响应中最重要的预测指标。(a)模型选择分析表明,实验持续时间和植被类型是SOC对表土中N添加的响应的重要预测指标。虚线表示截止点,以区分超过0.8 Akaike-theights阈值的重要预测指标。(b)模型选择分析表明,实验持续时间是SOC对n添加的反应的重要预测指标。bnd,背景n沉积率;持续时间,实验持续时间;频率,n个加法频率;地图,平均年降水;垫子,平均年温度;速率,n添加速率。
postprint的发电:BiałobrzeskaW.,GłowackiM.J.,Janik M.,Ficek M.,Pyrchla K.,Sawczak M.,Bogdanowicz R.,Malinowska N.,Malinowska N.,该d.dowska S.,Nidzworski D. Nanodiamonds,《分子液体杂志》,第1卷。342(2021),117338,doi:10.1016/j.molliq.2021.117338
河口,沿海和近岸地区是连接陆地和海洋生态系统的关键区域。自然过程和强大的人为活性都会影响这些区域中的物质转化,能量流以及微生物和矿物质相互作用(Lazar等,2017; Cooke等,2020; Liu等,2020)。微生物群落是包括碳和氮在内的生物地球化学周期的主要动力之一,并且在河口,沿海和近海生态系统的生态平衡调节中起着重要作用(Shiozaki等人,2016年; Sohm等,2016)。由于微生物和生物地球化学周期之间的紧密相互关系,有必要对这些环境中的耦合机制和生态影响进行更深入的探索。这个跨学科的主题旨在了解微生物群落在有机物分解,营养转化和温室气体排放等过程中的作用(Lin and Lin,2022; Zhang等,2023)。通过研究这些关键过程背后的微生物驱动因素,我们可以深入了解河口,沿海和近海生态系统的功能和韧性及其对环境变化的反应。本研究主题中的七种文章涵盖了世界各地的各种环境,从河口和盐沼到海水和氧气最小区域,重点关注微生物社区特征以及相关的碳和氮气循环过程。niu等。本研究主题包括有关微生物分类学和功能性漏洞的研究,可以为微生物驱动的生物地球化学过程提供基本的理解。综合了有关分布模式,组装机制,共汇率关系以及细菌的生态功能的信息
17.61 4.36 *存在313.51AAA 339.25AAA的存在266.85 ABB 356.49AAAA存在存在281.46 AAA 295.32BAA含义295.32BAA含义,随后是相同的小写字母,在列中,在列中,列在列中,第二列是第三列,并在第三列中,第三列和第三列是第三列和第三列和第三列和第三列。第四均值,根据f检验没有差异(p> 0.05)。
这是以下文章的同行评审:Ficek M.,Dec B.,Sankaran K. J.,Gajewski K.,Gajewski K.,Tatarczak P.,Wlasny I.,Wysmolek A.,Wysmolek A.,Haenen K.,Haenen K.,Gotszalk T.,Bogdanowicz R.,Bogdanowicz R.,Bogdanowicz R.钻石增强碳纳米棒,高级材料界面,第1卷。8,ISS。 20(2021),2100464,已在https://doi.org/10.1002/admi.202100464上以最终形式出版。 本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。 未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。 版权声明不得删除,遮盖或修改。 该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。8,ISS。20(2021),2100464,已在https://doi.org/10.1002/admi.202100464上以最终形式出版。本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。版权声明不得删除,遮盖或修改。该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年2月26日发布。 https://doi.org/10.1101/2024.02.25.581913 doi:Biorxiv Preprint
摘要:燃料中存在的含硫和含氮化合物的去除对于避免环境和人类健康逆境至关重要。由于严重的工作条件,炼油厂进行的常规氢化化和氢化硝化过程受到限制,更重要的是,它们的同时去除燃料中的氮和含硫化合物的效率低。另一方面,在轻度工作条件下,非氢技术是有益的,在过去的二十年中,一些成功的作品表明,这些作品在有效地从液体燃料中有效去除含硫和氮的化合物可以非常有效。超过四十年,广泛的研究(自1980年代以来成千上万的出版物)一直致力于开发远程脱硫技术,而无需考虑存在复杂的燃料基质,甚至考虑了其他有害污染物元素(例如氮)的存在。最近,已经报道了几种有效的非氢硝化过程,而没有考虑存在硫化合物。本审查论文是对有限工作的反映,该工作已成功地从燃料中去除含硫和氮的化合物。在此提供了对不同方法的评估(吸附,提取,氧化(照片)催化,超声辅助氧化)。此外,本综述旨在定义新的未来策略,这些策略将允许设计更合适,更经济的技术,有效地调和脱硫化和消除植物化过程,以生产更可持续的燃料。
摘要以高氮利用效率(NUE)的谷物作物的开发是全球农业的优先事项。除了传统的植物育种和基因工程外,植物微生物组的使用还提供了另一种改善作物nue的方法。可以深入了解与多高粱线不同的细菌群落,设计了一个现场实验,比较了足够且缺乏氮(N)下的24种多样的高粱双色线。Amplicon sequencing and untargeted gas chromatography–mass spectrometry were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacte rial communities and root metabolite composition of sorghum.我们发现高粱和细菌的丰富性和多样性之间存在正相关。高NUE线中的较大α多样性与主要细菌分类群假单胞菌的丰度降低有关。响应低N胁迫,在根代谢产物和根际细菌群落之间检测到了多个强相关性。这表明由于低N引起的高粱微生物组的变化与宿主植物的根代谢产物有关。综上所述,我们的发现表明,根代谢产物的宿主遗传调节在定义与根高粱基因型的根相关微生物组方面发挥了作用,而高粱基因型的NUE和对低N胁迫的耐受性有所不同。