摘要。森林生态系统的氮(n)状态的变化可以通过改变土壤有机含量(SOM)分解,土壤酶活性和植物 - 土壤相互作用,直接和间接地影响其car(c)隔离潜力。但是,链接的C – N周期和SOM衰减的模型表示未通过实验数据得到很好的验证。在这里,我们使用来自现有实验性森林的长期全挥发性研究的大量数据来比较两个土壤模型的n扰动的响应,这些响应以不同的方式代表分解动态的n扰动性(第一阶衰变与微生物显式脱粒的重新确定重新介绍了Michaelis-Michaelis-enteren Kinetics)。这两个土壤模型与提供相同输入数据的常见植被模型耦合。对研究地点测得的N添加的关键反应包括植物分配的转移,以有利于木质生物量在地下碳输入上,土壤呼吸减少,颗粒有机含量(POM)的积累以及土壤C:N比的增加。植物模型并未捕获植物C分配中经常观察到的转移,而n添加了n添加,从而导致土壤反应的前提不佳。我们修改了植物c分配方案的参数,以促进木材生产,而不是添加n个添加物,从而显着改善了植被和土壤呼吸的重音。此外,为了引起土壤C库存的增加和c:n比的增加,如所观察到的,我们修改了土壤模型中POM的衰减速率。通过这些修改,两种模型均捕获了负面的土壤呼吸和阳性土壤C库存反应,
。CC-BY-NC 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 1 月 12 日发布了此版本。;https://doi.org/10.1101/2022.12.20.521212 doi:bioRxiv 预印本
氮(N)的可用性限制了许多森林生态系统的主要生产率,尤其是北方和温带地区的生态系统(Lebauer and Treseder,2008; Du等,2020a)。可用的n来自通过土壤N矿化和叶子N吸收的内部循环,以及通过生物膜固化,大气N沉积和基岩风化的外部输入(Cleveland等,2013; Du and de Vries,2018; Morford et ef and。作为外部N输入,N沉积刺激植物的生长,从而增加许多陆地生态系统的C固结,尤其是在一个持续存在大气CO 2浓度的世界中(De Vries等,2014; O''Sullivan et al。自从工业革命伴随着人为n排放和沉积的工业革命以来,全球n个周期已被Human活动发生了巨大变化(Galloway等,2008,2021)。已经发现大量N排放会导致严重的空气污染(例如雾霾,酸雨和臭氧),并导致负面的生态影响(例如生物多样性丧失,酸性,酸性),当时是在各种生态系统中沉积到各种生态系统中,两者都在当前的热点地区,主要发生在East and South Asia和South Aseborions和北方地区,欧洲;等人,2010年;这些负面影响引起了从1980年代,1990年代的美国和2010年代的中国遏制欧洲国家排放的政策(Amann等,2013; Li等,2017; Zheng等,2018)。因此,n沉积在
最近关于氮掺杂的hydettium hydetium hydetium hydetium the近期近气条件超导性的报道启发了大量的实验研究,结果矛盾。我们从第一个原理模拟了所报道的超导体可能的母体结构的物理特性,即luh 2和luh 3。我们表明,只有LUH 3的声子条带结构才能解释由于间质八面体位点存在氢而导致的拉曼光谱。但是,这种结构仅通过超过6 GPA的非谐调稳定。我们发现,在报告的超导体中,引人入胜的颜色变化与LUH 2的光学特性一致,LUH 2的光学特性是由未抑制式频带间等离子体的存在确定的。具有压力的等离子体蓝光,并修饰样品的颜色,而无需任何结构相变。我们的发现表明实验中的主要成分是luh 2,在八面体部位有一些额外的氢原子。在高温下,luh 2和luh 3均未3个超导。
化学氮肥可以维持作物生产力,但是化学氮肥过度使用会导致经济成本和环境污染。减少氮肥使用使用的一种方法是将氮酶生物合成途径转移到非乳状植物中。Fe蛋白是氮酶的两个结构成分。NIFB是一个关键的成熟酶,它催化了结合和减少n 2的氮酶Femo-Concactor的生物合成中的第一个投入步骤。NIFB,NIFH,NIFD和NIFK的表达对于产生能够固定大气N 2的植物至关重要。在这项研究中,Paenibacillu Polymyxa Wly78的四个基因(NIFB,NIFB,NIFD和NIFK)通过CRE/LOXP重组系统组装在植物表达vector PCAMBIA1301中,从而产生重组表达vector PCAM- bia1301301-nifbhdk。然后,使用tumefaciens介导的转化将表达载体中携带的四个NIF基因共同融入了高地棉R15。通过PCR和RT-PCR选择了T 3代的纯合转基因棉线B2,B5和B17。QRT-PCR显示,NIFB,NIFH,NIFD和NIFK在类似水平的转基因棉中共表达。Western印迹分析表明,NIFB,NIFH,NIFD和NIFK是在转基因棉中共同生产的。棉花中四种关键的NIF蛋白(NIFB,NIFH,NIFD和NIFK)的共表达是工程氮酶生物合成途径的重要一步。
氮(N)是植物生存以及粮食安全的主要限制营养素。Modern农业的特征之一是化学肥料液化物的密集应用是确保作物产量的一种方式。尽管这种策略有助于应对农田的N短缺,但它同时发生了巨大的经济和环境影响。不仅施肥的工业生产是极度能量的,而且在施用肥料时,施肥剂也很大的结合在排水水中丢失或降解成一氧化二氮,这是一种非常有效的温室气体。简而言之,过度利用可以促进水生生态系统的欧盟研究,加速土壤降解并有助于全球变暖(Sutton等人。2011)。因此,肥料的使用是合理化的,并且我们提高了植物N使用效率(NUE),这在农作物中尚未臭名昭著。
农业生态系统是地球上最大的人工生态系统,可提供全球66%的粮食供应。土壤微生物是用于碳和营养循环的发动机。然而,雨养农业生态系统中的受精和种植模式介导的土壤微生物群落结构以及碳和氮转化的驱动机制尚不清楚。该研究是在中国山西省的Changwu农业生态实验站进行的。设计了七种不同的施肥和种植模式。使用磷酸盐脂肪酸(PLFAS)来探索受精和镀层模式对土壤微生物群落结构的影响以及与土壤碳和氮的关系。结果表明,处理之间的土壤物理和化学特性存在显着差异。有机肥料显着增加了土壤碳和氮,并减少了土壤pH值。小麦和玉米旋转处理中总PLFA和微生物基团的含量最高。与种植模式的变化相比,有机肥料对PLFA含量和土壤生态过程的影响更大。土壤微生物群落结构与土壤有机碳(SOC),总碳(TC),总氮(TN)和总磷(TP)具有显着正相关。与施用NP肥料相比,使用有机肥料显着提高了土壤呼吸率和矿化氮含量,同时降低了土壤微生物生物量碳(MBC)。相关分析表明,土壤呼吸与SOC和TP显着相关,并且矿化氮与SOC,硝酸盐氮,TN和MBC显着呈正相关。结构方程模型(SEM)表明,土壤呼吸速率受到TC的显着积极影响,并受到SWC的负面影响,并解释了63%,而矿化氮显着受到TN的影响,并解释了总方差的55%。
[1] N. W. Ashcroft,金属氢:高温超导体?,Phys Rev Lett 21,1748(1968)。[2] V. L. Ginzburg,宇宙中的超流量和超导性,苏联物理学USPEKHI 12,241(1969)。[3] L. Boeri,R。Hennig,P。Hirschfeld,G。Profeta,A。Sanna,E。Zurek,W。E. Pickett,W。E. Pickett,M。Amsler,R。Dias,M。I. Eremets等人,2021室 - 室温超导性超级保障路线图34,183002(202222222)。[4] A. P. Drozdov,M。I。Eremets,I.A. Troyan,V。Ksenofontov和S. I. Shylin,在硫氢系统高压的203开尔文处的常规超导性,Nature 525,73(2015)。[5] M. Somayazulu,M。Ahart,A。K。Mishra,Z。M. Geballe,M。Baldini,Y。Meng,Y。Meng,V。V。V. V. V. V. V. V. V. V. V. V. V. Hemley和R. J. Hemley,超过260 K高于260 K的证据,超过260 K,在巨大的超氢化物中,Megabar Pressure,Phys Rev Lett 122,022,027001(2019)。[6] A. P. Drozdov,P。P. Kong,V。S. Minkov,S。P. Besedin,M。A. Kuzovnikov,S。Mozaffari,L。Balicas,L。Balakirev,F。F. F. F. F. E. Graf,D。E. Graf,V。B. B. B. Prakapenka等人,在250 k的超级范围内,lanthanum hystrys hystrys hystry pressiver native pressiver native pressiver infernation natural pressery prastery natural pressery prestery prestery 5699999999(56)。[7] D. V. Semenok,A。G。Kvashnin,A。G。Ivanova,V。Svitlyk,V。Y。Fominski,A。V。Sadakov,O.A. Sobolevskiy,V。M。Pudalov,I。A. Troyan和A. R. Oganov,hydride thh10的161 K的超导性:合成和性能,今天的材料33,36(2020)。[8] W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li, D. Duan, T. Cui, and A. R. Oganov, High-Temperature Superconducting Phases in Cerium Superhydride with a T c up to 115 K below a Pressure of 1 Megabar , Phys Rev Lett 127 , 117001 (2021).[9] I. div>A. Troyan,D。V. Semenok,A。G. Kvashnin,A。V. V. Sadakov,O。 div> A. Sobolevskiy,V。M. Pudalov,A。G. Ivanova,V。B. Prakapenka,E。Greenberg,A。G. G. G. G. Gavriliuk等YH 6,Adv Mater 33,2006832(2021)。 [10] P. Kong,V。S. Minkov,M。A. Kuzovnikov,A。P. Drozdov,S。P. Besedin,S。Mozaffari,L。 div>A. Troyan,D。V. Semenok,A。G. Kvashnin,A。V. V. Sadakov,O。 div>A. Sobolevskiy,V。M. Pudalov,A。G. Ivanova,V。B. Prakapenka,E。Greenberg,A。G. G. G. G. Gavriliuk等YH 6,Adv Mater 33,2006832(2021)。[10] P. Kong,V。S. Minkov,M。A. Kuzovnikov,A。P. Drozdov,S。P. Besedin,S。Mozaffari,L。 div>
摘要 传统农业导致化学品的广泛使用,进而对环境造成负面影响,如土壤侵蚀、地下水污染和大气污染。农业系统应该更加可持续,以实现经济和社会盈利以及环境保护。一种可能的解决方案是采用精准农业,这是一种双赢的选择,既能维持粮食生产,又不会破坏环境。精准技术用于收集有关田间空间和时间差异的信息,以便将投入与特定地点的田间条件相匹配。在这里,我们回顾了有关小麦作物精准氮管理的报告。目的是对小麦地点特定氮管理的方法和结果进行调查,并分析这种农业实践的性能和可持续性。在此背景下,我们分析了过去 10 到 15 年的文献。主要结论是:(a)在做出氮管理决策之前,需要测量和了解土壤的空间变异性和小麦氮状况。不同传感器的互补使用以相对较低的成本改善了土壤特性评估; (b)结果表明,机载图像、遥感和近距传感对于通过响应性季节内管理方法预测作物氮素状况非常有用;(c)红边和近红外波段可以穿透冠层的较高植被部分。这些
生产现场的散装液氧、液氮和液氩储存系统 作为行业标准协调计划的一部分,欧洲工业气体协会 (EIGA) 发布了 EIGA Doc 127《生产现场的散装液氧、液氮和液氩储存系统》。本出版物由国际协调委员会成员联合出版。本出版物旨在作为国际协调出版物,供国际协调委员会所有成员在世界范围内使用和应用,该委员会成员包括亚洲工业气体协会 (AIGA)、压缩气体协会 (CGA)、欧洲工业气体协会 (EIGA) 和日本工业和医用气体协会 (JIMGA)。地区版具有与 EIGA 版相同的技术内容,但是,主要在格式、使用的单位和拼写方面有所编辑变化。地区监管要求适用于欧洲。