关于FDP:有关人工智能(AI)的教师发展计划(FDP),用于计算机视觉,医学成像应用将帮助教育者和研究人员了解AI基础知识及其如何应用于具有多个安全应用的医学成像技术。参与者将探索机器学习和深度学习概念,专注于使用AI进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:针对计算机视觉应用程序的最新实施介绍。机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,SVM分类,神经网络和应用程序。深度学习方法的简介和基于DL的其他架构及其应用。用于计算机视觉,生物特征和医学成像实现的深度学习体系结构。医学图像数据处理和分析。用于生物医学成像,基于CT扫描/MRI的图像分析,眼底和医学图像分类的AI/ML。对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等使用张量流/Pytorch识别人类活动/动作/生物识别。张量流/keras/pytorch/jupyter和colab的基础知识。使用Python/Matlab使用数据预处理和数据可视化。使用Python/Matlab的动手会话。CV和AI算法在硬件平台上实现,例如Jetson Nano,TX2和Pynq等。主持此计划的教师:该计划将由Nit Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。
关于 FDP:5G/6G 通信和信号处理应用的人工智能 (AI) FDP 重点介绍人工智能在 5G/6G 通信和信号处理领域的影响。AI 技术广泛应用于许多应用,例如基于 5G/6G 的无线通信、信号处理、生物医学图像处理、计算机视觉、自然语言处理等。本课程将介绍 AI 的基础知识和研究领域,以及其在 5G/6G 通信和信号处理中的应用。它将有助于提升印度各工程院校教职员工的专业知识和能力。专家涵盖了一系列当代计算主题,并提供强大的理论基础,并培养批判性分析和实践技能。该 FDP 旨在传授知识并培训 AI 工程方面的基础知识以及对最近使用 5G/6G 进行通信和使用 AI 的信号处理应用的见解。主要课程内容: 图像处理、计算机视觉、信号分类、统计信号处理、信号处理技术和基于 5G/6G 的无线通信技术和应用的简介。 机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于信号处理、计算机视觉、语音处理和 5G/6G 通信系统的 CNN 架构。 电路设计中的 AI、天线系统设计中的 ML/DL、软件定义无线电、认知无线电中信号处理的机器学习。 MIMO 系统、系统设计中的去耦电路、双工系统、mWave 通信。 ISAC、无人机通信、5G/6G 通信技术、量子通信。 农业无人机、医疗保健人工智能、脑机接口、情绪识别。 用于生物医学成像和信号处理、EEG/ECG 信号处理和非侵入性医疗应用的 AI/ML。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 Python/MATLAB 进行数据预处理和数据可视化。 案例研究,使用 Python/MATLAB 进行动手实践。 负责本课程的教师:本课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在本课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。
关于FDP:有关人工智能(AI)的教师开发计划(FDP),用于计算机视觉,医学成像和物联网应用程序将帮助教育者和研究人员了解AI基础知识以及它如何适用于具有多个安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,专注于使用AI和IoT进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:•物联网体系结构,通信协议,计算机视觉简介,大数据分析,IIT,生物医学和医学图像分析应用程序。•机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,神经网络和应用。•深度学习方法的简介和基于DL的其他架构及其应用。•张量流/keras/pytorch/jupyter和colab的基础知识。•CNN架构用于计算机视觉,生物特征和医学成像实现。•IOMT,AI/IOT用于医疗保健监测,精密农业,医疗诊断,工业应用。•用于生物医学成像,CT扫描/MRI/X射线图像分析,眼底和医学图像分类的AI/ML。•活动识别,对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等。•使用Python/Matlab使用数据预处理和数据可视化。•使用Python/Matlab的动手会话。主持此计划的教师:该计划将由NIT Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。注册费细节:教师和研究学者Rs.750/ - 行业参与者Rs.2250/ -
Gayatri Vidya Parishad工程学院(GVPCE)由高级教育信托基金会(Gayatri Vidya Parishad)于1996年成立,以促进技术教育。GVPCE(a)提供10 B.Tech。,5 M.Tech计划和MCA,年度摄入量为1260。学院获得了NAAC的认可,其“ A + +”等级。该研究所获得了卢比的资金。在技术教育质量改进计划(TEQIP)下的5千万,印度政府MHRD的S.C-1.2。 新德里科学技术系批准了科学与工业研究中心(SIRC)支持研究活动。 UGC在2009年授予该大学的自治权。 学院采用了2013-14学年所有计划的基于结果的教育方法。 大学获得了卢比。 资助组织的12千万 朝45个研发项目。 研究和咨询项目,专门的教职员工,设备齐全的实验室,良好的基础设施和有功的学生是该机构的主要优势。 该研究所鼓励行业和学术界之间的合作学习,以此来加强其实用和现实世界经验的课程。 自1996年Gayatri Vidya Parishad工程学院成立以来,机械工程系一直在运作,最初的入学量为60名学生,现在已经增加到120名。。在技术教育质量改进计划(TEQIP)下的5千万,印度政府MHRD的S.C-1.2。新德里科学技术系批准了科学与工业研究中心(SIRC)支持研究活动。UGC在2009年授予该大学的自治权。学院采用了2013-14学年所有计划的基于结果的教育方法。大学获得了卢比。资助组织的12千万朝45个研发项目。研究和咨询项目,专门的教职员工,设备齐全的实验室,良好的基础设施和有功的学生是该机构的主要优势。该研究所鼓励行业和学术界之间的合作学习,以此来加强其实用和现实世界经验的课程。自1996年Gayatri Vidya Parishad工程学院成立以来,机械工程系一直在运作,最初的入学量为60名学生,现在已经增加到120名。该系拥有一支由高素质的教职员工组成的团队,其中许多人拥有印度和国外的IIT,NIT和大学等著名机构的博士学位。2020年,该部门启动了B.技术机械工程。(机器人)计划,摄入60名学生。此外,它还提供了M.技术计划,以12。该部门已获得了几个价值2400万卢比的研发和咨询项目,并在著名的国家和国际期刊和会议上发表了246篇论文。它拥有14项专利,并授予7项,4项已发表和3份提交。全国著名的出版商出版了几本教师的书籍。该部已获得NBA五次认可。该部门还设有一个机械状况监测中心,为高振动问题提供了解决方案。此外,它配备了CNC加工和高级机器人实验室。朝着技能开发的情况下,该部门与APSSDC T-SDI,Siemens和Dassault Labs合作,总价值为2千万卢比。
关于 FDP:5G/6G 通信和信号处理应用的人工智能 (AI) FDP 重点介绍人工智能在 5G/6G 通信和信号处理领域的影响。AI 技术广泛应用于许多应用,例如基于 5G/6G 的无线通信、信号处理、生物医学图像处理、计算机视觉、自然语言处理等。本课程将介绍 AI 的基础知识和研究领域,以及其在 5G/6G 通信和信号处理中的应用。它将有助于提升印度各工程院校教职员工的专业知识和能力。专家涵盖了一系列当代计算主题,并提供强大的理论基础,并培养批判性分析和实践技能。该 FDP 旨在传授知识并培训 AI 工程方面的基础知识以及对最近使用 5G/6G 进行通信和使用 AI 的信号处理应用的见解。主要课程内容: 图像处理、计算机视觉、信号分类、统计信号处理、信号处理技术和基于 5G/6G 的无线通信技术和应用的简介。 机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于信号处理、计算机视觉、语音处理和 5G/6G 通信系统的 CNN 架构。 电路设计中的 AI、天线系统设计中的 ML/DL、软件定义无线电、认知无线电中信号处理的机器学习。 MIMO 系统、系统设计中的去耦电路、双工系统、mWave 通信。 ISAC、无人机通信、5G/6G 通信技术、量子通信。 农业无人机、医疗保健人工智能、脑机接口、情绪识别。 用于生物医学成像和信号处理、EEG/ECG 信号处理和非侵入性医疗应用的 AI/ML。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 Python/MATLAB 进行数据预处理和数据可视化。 案例研究,使用 Python/MATLAB 进行动手实践。 负责本课程的教师:本课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在本课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。
关于FDP:有关计算机视觉的人工智能(AI)的教师发展计划(FDP),医学成像应用将帮助教育工作者和研究人员了解AI基础知识以及它如何应用于具有多个安全应用的医学成像和技术。参与者将探索机器学习和深度学习概念,专注于使用AI进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具集成到他们的工作中,提高他们通过现代技术教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:针对计算机视觉应用程序的最新实施介绍。机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,SVM分类,神经网络和应用程序。深度学习方法的简介和基于DL的其他架构及其应用程序。用于计算机视觉,生物特征和医学成像实现的深度学习体系结构。使用Python/Matlab的动手会话。医学图像数据处理和分析。用于生物医学成像,基于CT扫描/MRI的图像分析,眼底和医学图像分类的AI/ML。对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等使用张量流/Pytorch识别人类活动/动作/生物识别。张量流/keras/pytorch/jupyter和colab的基础知识。使用Python/Matlab使用数据预处理和数据可视化。CV和AI算法在硬件平台上实现,例如Jetson Nano,TX2和Pynq等。主持此计划的教师:该计划将由Nit Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。注册费细节:教师和研究学者Rs.750/ - 行业参与者Rs.2250/ -
项目工作的持续时间(块周期)为6周(8年块周期):1Jan -17 -15年2月16日至2月16日至3月31日,3月1日,5月16日至5月16日至5月16日至5月16日至5月16日至30日,1月1日,1月15日至8月15日至8月16日至8月16日至9月1日至10月15日至15日,11月16日至11月16日至11月31日至31日31日至31日至31月31日。申请人和每个共同申请人(最多4组)必须是印度公民,来自同一分支机构,学期和喀拉拉邦的一所大学或IIT/NITS。在所有方面填写并由主管或HOD批准的申请表可以通过Post,HRDD,HRDD,VSSC,ISRO P.O,Thiruvananthapuram,Thiruvananthapuram -695 022或扫描申请邮寄到Preethi_elizabeth@vssc.gov.in,至少在一个月之前,在一个月之前,在preethi_elizabeth beande be preethi_elizabeth beave.gov.in the preethi_elizabeth beand preethi_elizabeth bean be preethi_elizabeth expection of thiruvananthapuram -695 022。 对于前五个学期,每个申请人的平均最低分数应为75%或同等的CGPA。 接受申请的接受将与VSSC中的大学或第一申请人或联系人传达。 如果选择用于项目工作,则必须在加入时制作所有申请人的大学ID和一个有效的照片ID证明(护照/选民ID/驾驶执照/ AADHAAR)以及一份副本,以进行验证和文档,学生应严格遵循所有安全规则和指南。 VSSC的项目指南将是学生在项目工作期间的报告官。 项目工作应在规定的期限内完成,并且不允许进一步扩展。 将不会从HRDD颁发任何证书。在所有方面填写并由主管或HOD批准的申请表可以通过Post,HRDD,HRDD,VSSC,ISRO P.O,Thiruvananthapuram,Thiruvananthapuram -695 022或扫描申请邮寄到Preethi_elizabeth@vssc.gov.in,至少在一个月之前,在一个月之前,在preethi_elizabeth beande be preethi_elizabeth beave.gov.in the preethi_elizabeth beand preethi_elizabeth bean be preethi_elizabeth expection of thiruvananthapuram -695 022。对于前五个学期,每个申请人的平均最低分数应为75%或同等的CGPA。接受申请的接受将与VSSC中的大学或第一申请人或联系人传达。如果选择用于项目工作,则必须在加入时制作所有申请人的大学ID和一个有效的照片ID证明(护照/选民ID/驾驶执照/ AADHAAR)以及一份副本,以进行验证和文档,学生应严格遵循所有安全规则和指南。VSSC的项目指南将是学生在项目工作期间的报告官。项目工作应在规定的期限内完成,并且不允许进一步扩展。将不会从HRDD颁发任何证书。
关于 FDP:这个关于医学成像和信号处理应用的人工智能 (AI) 教师发展计划 (FDP) 将帮助教育工作者和研究人员了解 AI 基础知识以及它如何应用于具有多种安全应用的医学成像和信号处理技术。参与者将探索机器学习和深度学习概念,重点是将 AI 用于医学成像和信号处理技术,这有助于诊断、医疗保健、农业、零售和监控系统。AI 在图像/信号处理中起着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确而有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中有效使用不同算法的 AI 的实用技能。到课程结束时,参与者将准备好将 AI 工具集成到他们的工作中,提高他们使用现代技术进行教学和解决安全挑战的能力。这将通过提高参与者在这些关键领域的专业知识和教学能力而使他们受益。主要课程内容: 图像处理、计算机视觉、生物医学信号处理、生物医学信号分类、信号处理技术和医学图像分析应用简介。 机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于生物医学信号处理、计算机视觉、语音处理和医学成像实现的 CNN 架构。 用于医疗保健、脑机接口、医学诊断、生物识别、情绪识别、活动识别的人工智能。 用于生物医学成像、基于 CT 扫描/MRI 的图像分析、眼底和医学图像分类的 AI/ML。 用于信号处理应用的 AI/ML、EEG/ECG 信号处理、ECG、EEG 和 PPG 信号分析、异常检测。 用于医学信号/图像数据分类的 AI/ML,各种医学图像分析和应用。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 Python/MATLAB 进行数据预处理和数据可视化。 案例研究,使用 Python/MATLAB 的动手实践课程。主持本课程的教师:本课程将由 NIT Warangal 的教师主持;来自 IIT/NIT/IIIT 相关领域的学者将受邀在本课程中授课。预计行业演讲者也将作为课程的一部分授课。注册费详情:教师和研究学者 750 卢比/- 行业参与者 2250 卢比/-
(由印度政府电子和信息技术部 (MeitY) 赞助)序言:“电子与信息通信技术学院”在印度政府电子和信息技术部 (MeitY) 的资助下,于瓦朗加尔国立理工学院 (NIT Warangal) 成立。该学院的管辖范围包括特伦甘纳邦、安得拉邦、卡纳塔克邦、果阿邦、本地治里以及安达曼和尼科巴群岛。该学院的职责是提供标准化课程和新兴电子、信息通信技术领域的教师发展计划,为行业提供培训和咨询服务,为行业提供课程开发,为在职专业人员提供持续教育计划 (CEP),并为技术孵化和创业活动提供建议和支持。关于 FDP:该 FDP 旨在提供强大的理论背景以及计算机视觉和医学成像应用领域的实践经验,以及如何借助基于计算机视觉和医学图像分析的算法高效地实现图像的可视化和分析。在“数字印度”计划蓬勃发展的时代,计算机视觉在机器视觉和医学成像领域变得至关重要,因为图像的多种应用决定并有助于提高整个地区和国家的社会经济地位。著名的 CV 和医学成像专家将提供基于计算机视觉和医学成像的方法。该 FDP 旨在传授知识并培训人工智能工程方面的基础知识以及使用人工智能在最近的计算机视觉医学图像分析应用中的见解。FDP 将有助于在计算机视觉和医学图像分析应用的 AI/ML 领域工作的教师和研究人员。主要课程内容: 计算机视觉和医学图像分析应用简介。 机器学习基础,数据预处理和数据可视化。 监督和无监督学习方法、SVM 分类、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于 CV 和医学成像实现的 CNN 架构。 视频分析、目标检测/追踪、分割、Yolo 模型、RCN、Unet 和 FRCNN。 生物特征检测、人体活动和人脸识别、情绪识别。 医学图像数据处理与分析。 用于生物医学成像的 AI/ML、基于 CT 扫描/MRI 的图像分析、眼底成像和医学图像分类。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 python/MATLAB 进行数据预处理和数据可视化。 使用 Python/MATLAB 进行实践课程。 在 Jetson Nano、TX2 等硬件平台上实现 CV 和 AI 算法。负责此课程的教师:该项目将由瓦朗加尔国立理工学院 (NIT Warangal) 的教职员工授课;印度理工学院 (IIT)、印度理工学院 (NIT) 和印度理工学院 (IIIT) 相关领域的学者也将受邀授课。此外,预计来自各行各业的演讲嘉宾也将参与课程。
和创业活动。关于 FDP:这项关于计算机视觉、医学成像和物联网应用的人工智能 (AI) 的教师发展计划 (FDP) 将帮助教育工作者和研究人员了解人工智能基础知识以及它如何应用于具有多种安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,重点是将人工智能和物联网用于医学成像,这有助于诊断、医疗保健、农业、零售和监控系统。人工智能在计算机视觉中发挥着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中有效使用人工智能和不同算法的实用技能。到课程结束时,参与者将准备好将人工智能工具整合到他们的工作中,提高他们用现代技术教学和解决安全挑战的能力。这将使参与者受益,提高他们在这些关键领域的专业知识和教学能力。主要课程内容:•物联网架构、通信协议、计算机视觉简介、大数据分析、IIOT、生物医学和医学图像分析应用。•机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。•深度学习方法简介,以及基于DL的其他架构及其应用。•用于计算机视觉、生物识别和医学成像实现的CNN架构。•用于医疗监测、精准农业、医疗诊断、工业应用的AI/IoT。•用于生物医学成像、基于CT扫描/MRI的图像分析、眼底和医学图像分类的AI/ML。•对象检测/跟踪算法,如Yolo等,分割算法,如UNET等。•使用Tensor Flow/PyTorch进行活动/生物识别。•Tensor Flow/Keras/PyTorch/Jupyter和Colab的基础知识。•使用python/MATLAB进行数据预处理和数据可视化。•使用Python/MATLAB进行实践课程。 • 在 Jetson Nano、TX2 和 PYNQ 等硬件平台上实现 CV 和 AI 算法。 • 负责此课程的教师:该课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在该课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。注册费详情:教师和研究学者 750 卢比/- 行业参与者 2250 卢比/-