12月𝟐𝟕𝐭𝐡,1898年,出生于Dist村的Kadam家族。Amravati。1906-1910教皇教育1910年至1918年在Karanja的中学教育和Amravati的高中教育。 1918年至1920年在浦那弗格森学院的大学教育,1920年8月𝟐𝟓1920年去了英国接受高等教育。 9月𝟐𝟏1920年在剑桥大学入学。 1921年10月通过了法律考试。 Jan。 𝟐𝟓𝟐𝟓𝟐𝟓1925年授予博士学位。 学位。 他的研究主题是``在吠陀时期的宗教的起源与发展''。 获得了法律的程度。 1925年7月在接受教育后返回印度。 成功地恳求“国家敌人”。 1926年12月,Shri Shraddhanand为贫困学生提供了旅馆,并提供了免费的住宿和寄宿。 为年轻学生创办了体育馆。 在马拉松高中担任老师。 8月𝟐𝟖1927开始运动,因为将哈里安人和不可触摸的人纳入了安巴·德维神庙。 11月𝟏𝟑1927在阿姆拉瓦蒂举行了会议,以与Babasaheb Ambedkar博士一起取消了不社交的情况,并继续运动进入Amba Devi Temple,并成功地与受托人讨论了这些问题。 11月𝟐𝟔1927年嫁给了KU。 Vimalabai Vaidya。 这是一场互联网婚姻。 1928-1930 1)建立了Shetkari Sanghatana。 2)当选为阿姆拉瓦蒂地区议会主席。 3)将塞斯(Cess)表格18佩斯(Paise)提高到27佩斯(Paise),以发展初等教育。1906-1910教皇教育1910年至1918年在Karanja的中学教育和Amravati的高中教育。1918年至1920年在浦那弗格森学院的大学教育,1920年8月𝟐𝟓1920年去了英国接受高等教育。9月𝟐𝟏1920年在剑桥大学入学。1921年10月通过了法律考试。Jan。 𝟐𝟓𝟐𝟓𝟐𝟓1925年授予博士学位。 学位。 他的研究主题是``在吠陀时期的宗教的起源与发展''。 获得了法律的程度。 1925年7月在接受教育后返回印度。 成功地恳求“国家敌人”。 1926年12月,Shri Shraddhanand为贫困学生提供了旅馆,并提供了免费的住宿和寄宿。 为年轻学生创办了体育馆。 在马拉松高中担任老师。 8月𝟐𝟖1927开始运动,因为将哈里安人和不可触摸的人纳入了安巴·德维神庙。 11月𝟏𝟑1927在阿姆拉瓦蒂举行了会议,以与Babasaheb Ambedkar博士一起取消了不社交的情况,并继续运动进入Amba Devi Temple,并成功地与受托人讨论了这些问题。 11月𝟐𝟔1927年嫁给了KU。 Vimalabai Vaidya。 这是一场互联网婚姻。 1928-1930 1)建立了Shetkari Sanghatana。 2)当选为阿姆拉瓦蒂地区议会主席。 3)将塞斯(Cess)表格18佩斯(Paise)提高到27佩斯(Paise),以发展初等教育。Jan。𝟐𝟓𝟐𝟓𝟐𝟓1925年授予博士学位。学位。他的研究主题是``在吠陀时期的宗教的起源与发展''。获得了法律的程度。1925年7月在接受教育后返回印度。成功地恳求“国家敌人”。1926年12月,Shri Shraddhanand为贫困学生提供了旅馆,并提供了免费的住宿和寄宿。为年轻学生创办了体育馆。在马拉松高中担任老师。8月𝟐𝟖1927开始运动,因为将哈里安人和不可触摸的人纳入了安巴·德维神庙。11月𝟏𝟑1927在阿姆拉瓦蒂举行了会议,以与Babasaheb Ambedkar博士一起取消了不社交的情况,并继续运动进入Amba Devi Temple,并成功地与受托人讨论了这些问题。11月𝟐𝟔1927年嫁给了KU。Vimalabai Vaidya。这是一场互联网婚姻。1928-1930 1)建立了Shetkari Sanghatana。2)当选为阿姆拉瓦蒂地区议会主席。3)将塞斯(Cess)表格18佩斯(Paise)提高到27佩斯(Paise),以发展初等教育。12月𝟏𝟔1930被任命为旧的中央邦和贝拉部长担任部长,担任教育,农业,合作和公共工程部长。1931年当选为中央邦立法委员会。1931-32建立了Amravati的Shri Shivaji教育协会。1933年辞去了部长的抗议,以抗议种姓主义政治。1935 - 38年,与海得拉巴的科尔哈普尔亲王和尼扎姆建立了关系,并获得了阿姆拉瓦蒂·什里·希瓦吉教育学会的发展经济援助。1939年,马拉松·希克山(Maratha Shikshan Parishad)主席,并表达世俗的观点。1942-44曾担任德瓦斯州大臣和德瓦斯亲王的顾问和德瓦斯委员会成员。1944年辩护了自由战士和阿扎德·赫德·塞纳(Azad Hind Sena)的案子。1946年阿姆拉瓦蒂地区国会委员会主席。1948-1952 1)参议院那格浦尔大学的成员,并被授予荣誉法学博士学位。
通过将光结合到下波长体积,光力学的微腔可以大大增强光和机械运动之间的相互作用。但是,这是以增加光损耗率的成本。因此,将基于微腔的光力系统放置在未解决的边带机制中,以防止基于边带的地面冷却。减少此类系统光损耗的途径是设计腔镜,即与机械谐振器相互作用的光学模式。在我们的工作中,我们分析了这样的光力学系统,其中其中一个镜子与频率很大,即悬挂的Fano镜子。此光力学系统由两种光学模式组成,这些光学模式与悬挂的Fano镜子的运动。我们制定了一个量子耦合模式描述,其中包括标准色散光学耦合以及耗散耦合。我们在线性状态下求解了系统动力学的兰格文方程,表明即使腔本身不在解析的边带机制中,但可以从室温下进行冷却,而是通过强光模式耦合来实现有效的侧带分辨率。重要的是,我们发现,需要针对有效激光衰减来适当分析腔输出光谱,以推断机械谐振器的声子占用。我们的工作还可以预测如何通过工程化Fano Mirror的特性来达到基于FANO的微博中非线性量子光学机械的制度。
摘要 本研究旨在评估高渗盐水与晶体液(生理盐水/乳酸林格氏液)在改善创伤性脑损伤 (TBI) 患者临床结果方面的效果。我们以不同的 MeSH 词搜索了 1990 年至今的电子数据库和灰色文献(未发表的文章)。关于 TBI(>18 岁)减压开颅术的随机对照试验、病例对照研究和前瞻性队列研究。临床结果指标包括格拉斯哥昏迷结果量表 (GCOS)、扩展 GCOS 和死亡率。数据被提取到 Review Manager 软件中。共检索并分析了 115 篇符合纳入标准的文章。最终,我们的荟萃分析纳入了五项研究,结果显示,使用高渗盐水的 TBI 患者在出院或 6 个月时获得良好结果的可能性与使用晶体液的患者相比无统计学意义(比值比 [OR]:0.01;95% 置信区间 (CI):0.03–0.05;P = 0.65)。出院或 6 个月时使用高渗盐水与使用晶体液的死亡相对风险 (RR) 为 RR:0.80;95% CI:0.64–0.99;P = 0.04。亚组分析显示,与晶体液组相比,使用高渗溶液的组干预次数显著减少 OR:0.53;95% CI:0.48–0.59; P < 0.00001,并且还缩短了重症监护病房的住院时间(OR:0.46;95% CI:0.21–1.01;P = 0.05)。高渗盐水减少了经济负担,但既不影响临床结果也不降低死亡率。然而,需要进一步的临床试验来证明高渗盐水与普通盐水/乳酸林格氏液相比,是否在改善 TBI 患者的临床和神经系统状况方面有任何作用。
在过去的15年中,随着突变的发现以及新的靶向疗法和免疫检查点抑制剂的发展,非小细胞肺癌(NSCLC)治疗发生了变化。表皮生长因子受体(EGFR)是NSCLC中的第一个突变,该突变在2013年获得了FDA批准的药物。osimertinib是第三代酪氨酸激酶抑制剂,被批准为晚期NSCLC的第一线治疗,并在切除的IB-IIIA阶段的辅助设置中被批准。However, resistance to osimertinib is inevitably an issue, and thus patterns of resistance to EGFR -mutated NSCLC have been studied, including MET ampli fi cation, EGFR C797X-acquired mutation, human epidermal growth factor 2 (HER2) ampli fi cation, and transformation to small cell and squamous cell lung cancer.EGFR TKI进展后,EGFR渗透的NSCLC的当前管理目前受到化学疗法和放射疗法的限制,有时与Osimertinib的持续结合在一起。抗体 - 药物缀合物(ADC)由与细胞毒性药物相关的单克隆抗体组成,并且是NSCLC中越来越流行的药物类别。Trastuzumab Deruxtecan在HER2-Mutated NSCLC中获得了加速FDA的批准。ADC提供了一种可能的解决方案,以找到可以绕过细胞内电阻机制的新处理。在这篇评论文章中,我们总结了ADC和ADC的机制和EGFR被渗透的NSCLC的机制,其中包括满足放大的目标,HER3,Trop2和EGFR,以及其他ADC目标,以及其他在NSCLC中进行调查的ADC目标,并讨论了未来与ADC的方向。
基于树种的碳储量估计在尼日利亚很少见。因此,我们使用系统采样技术使用非破坏性方法研究了单个树木的能力。使用Borgu部门的预先分类的Landsat-Oli/TC图像铺设了一百个圆图。绘图中心已找到并用全球定位系统接收器标记。将12.61 m半径(500 m 2)的主要图细分为5.64 m半径(100 m 2)的子图。在主要地块中测量了乳房高度(dbh)≥10cm的树木,而在子图中考虑了≥5cm dbh的树。进行了物种识别和测量。核心样品。核心样品在70°C下干燥至恒定重量。然后将木材密度计算为烤箱干燥的重量/新鲜体积。地上碳上的碳确定为50%生物量。使用核心采样器和土壤螺旋钻以600个样品在两个深度的样品图内,在样品图内的三个点上对对角样品收集土壤样品。样品被气干,磨碎并通过2 mm的筛子筛分。核心采样器和环用于测量散装密度。在105°C下将样品干燥24小时。土壤有机物是通过Fe 2确定的,因此4滴定了酸 - 二足的消化,并计算了有机碳浓度。使用涉及木材密度,DBH和Tree-Height和Anova的异形方程分析树碳数据。 遇到了16个家庭中的35种树种。树碳数据。遇到了16个家庭中的35种树种。凹室微果是最常发生的(18.8%)。树种的丰富度,多样性和重要性值指数分别为2.852、4.779和41.76±35.41。Vitellaria Paradoxa和Afzelia Africana是唯一发现的脆弱物种。带有较大DBH的树木隔离了更多的碳。因此,平均DBH为111.4±0.00 cm的Adansonia digitata隔离了最高量(2.8吨/公顷),这与其他数量明显不同(p <.05)。Securidaca longipendiculata的碳量最少(0.001吨/公顷)。与此同时,土壤碳在Acacia kosiensis,V。Paradoxa和Grewia Mollis主导的地块中较高,分别为0.006758吨/ha,平均0.073±0.0021 ton/ha的bon-bon-Stock和car--bon-stock和co-2,分别为0.271±0.010吨/ha的co 2。
摘要 本章主张采用结构性不公正方法来治理人工智能。结构性不公正包括分析和评价两个部分。分析部分包括社会科学中众所周知的结构性解释。评价部分是一种正义理论。结构性不公正是一个强大的概念工具,它使研究人员和从业者能够识别、表达甚至预测人工智能偏见。本章以人工智能中因结构性不公正而产生的种族偏见为例。然后,本章介绍了哲学家 Iris Marion Young 提出的结构性不公正概念。此外,本章还认为结构性不公正非常适合作为一种人工智能治理方法,并将这种方法与从危害和利益分析或价值陈述开始的替代方法进行了比较。本章表明,结构性不公正为多样性、公平和包容性的价值观和关注提供了方法论和规范基础。本章最后对“结构”和责任的概念进行了展望。结构的概念是正义的核心。一个开放的理论研究问题是人工智能本身在多大程度上是社会结构的一部分。最后,责任的实践是结构性不公正的核心。即使他们不能对结构性不公正的存在负责,每个人和每个组织都有责任在未来解决结构性不公正问题。
量子计算利用量子力学现象(如叠加和纠缠),能够以更高的精度、更省时省能的方式解决各种问题。然而,量子算法依赖于多个预处理和后处理任务,这些任务通常需要在传统硬件上执行,例如数据准备、结果分析和参数优化。由于目前可用的噪声中型量子 (NISQ) 设备容易出错,当今大多数量子算法都被设计为所谓的变分量子算法 (VQA) [2]。VQA 交替在量子设备上执行参数化量子电路和通过评估执行结果的质量来经典优化量子电路参数。此外,量子设备不适合许多传统任务,例如数据持久化或可视化,这使得它们成为补充传统计算机的特殊协处理器。因此,量子应用本质上是混合的,必须从经典和量子的角度以及它们的集成的角度进行设计[4]。
宫颈癌是全球第二大危害妇女健康的恶性肿瘤,全球宫颈癌的发病率和死亡率持续上升。复发或转移性宫颈癌患者的5年生存率显著降低,现有治疗方法有效率低下、不良反应大,迫切需要新的、有效、耐受性良好的治疗方法。抗体药物偶联物(ADC)是一种新的靶向治疗方式,可以有效杀伤肿瘤细胞。本文旨在概括ADC的组成、研发历史和作用机制,综述ADC在宫颈癌治疗中的研究进展,并对ADC的应用进行总结和展望。
但是,系统的特定设计和实际实施因国家而异。日本系统的关键特征是它不受法律管辖,因此没有期望在批准过程中获得法院判决。相反,它实际上是根据卫生,劳动和福利部董事(“ MHLW”)发出的行政通知(“两个董事的通知”)1。MHLW在“药物专利信息报告表”中根据名牌药物制造商或专利权人提供的信息审查了涵盖品牌药物的相关专利,该专利通常不公开。如果MHLW认为后续药物会侵犯专利,则不会颁发以下药物的营销授权。
