高清(HD)地图对于自动驾驶系统的安全至关重要。虽然现有技术启用了相机图像和板载传感器以生成对高精度地图的审核,但它们受到对单帧输入的依赖的限制。这种方法限制了它们在诸如OCClusions之类的复杂情况下的稳定性和性能,这主要是由于缺乏时间信息。此外,当应用于更广泛的感知范围时,它们的性能会降低。在本文中,我们介绍了流媒体,这是一种新颖的在线映射管道,擅长于视频的长期时间建模。流媒体网络采用了多点的关注和时间信息,可以使大型本地高清图的构建具有高稳定性,并进一步解决了现有方法的限制。此外,我们严重地使用了广泛使用的在线HD MAP构造基准和数据集,Argoverse2和Nuscenes,在现有评估协议中揭示了显着的偏见。我们根据地理跨度来启动基准,从而促进公平而精确的评估。实验结果验证了流媒体网络在所有设置中都显着超过现有方法,同时保持在线推断速度为14。2 fps。我们的代码可在https://github.com/yuantianyuan01/ streammapnet上使用。
Solvay是一家开创性的化学公司,其遗产源于苏打灰过程中的创始人欧内斯特·索尔维(Ernest Solvay)的关键创新,致力于通过其9,000多名员工的员工在全球范围内提供基本解决方案。自1863年以来,Solvay利用化学的力量创造了创新的,可持续的解决方案,以满足世界上最重要的需求,例如净化我们呼吸的空气和我们喝的空气,维护我们的食物供应,保护我们的健康和健康,保护我们的健康,生态友善的服装,从而创造了我们的汽车更具可持续性和更清洁和保护我们的房屋。作为一家世界领先的公司,在2022年净销售额为56亿欧元,以及在欧洲版本布鲁塞尔和巴黎(SOLB)上的上市,其坚定不移的承诺使到2050年的过渡到了碳中性的未来,强调了其对可持续性和公平和公平和公平过渡的奉献精神。有关Solvay的更多信息,请访问Solvay.com或在LinkedIn上关注Solvay。
● Predicting Consultation Success in Online Health Platforms Using Dynamic Knowledge Networks and Multimodal Data Fusion, University of Arizona, 2024 ● Predicting Consultation Success in Online Health Platforms Using Dynamic Knowledge Graphs and Multimodal Data Fusion, Summer Workshop on AI for Business (SWAIB), Shanghai, China, 2024 ● Achieving Equitable Access to Medical Laboratory Tests through Optimal Sparse Decision Tree, IISE Annual Conference & EXPO,加拿大蒙特利尔,2024●使用多模式和多通道多通道的多渠道综合语音术数据,IISE年度会议和博览会,加拿大蒙特利尔,2024年,患者辍学的预测:一种多模式的动态知识和文本矿业,IC Science,IC Scorial,IC Scorial,IC Science,IC Science,IC Scorial,IC Scorial,IC Sciencal,Arona social IC, Real-Time Signals with Wavelet-Transform-based Convolutional Neural Network, in: Proceedings of the 54 th Hawaii International Conference on System Sciences (HICSS), Hawaii, USA, 2023 ● Depression Detection in Social Media Using Time-and-knowledge-aware LSTM and Depression Diagnosis-related Entity Extraction, FoRMLA - Front Range of Machine Learning Alliance Seminar Series, University of Colorado, 2022 ● ICU Mortality预测:我们可以做得更好吗?一个基于机器学习和随机信号分析技术的新模型,爱荷华州立大学,2021●域●领域适应从大型社交媒体数据集中提取信号的域名,爱荷华州立大学,2018年,对哮喘的风险因素的全面分析:基于机器学习和机器学习和大型异构数据源的疾病,及其在jossection和sysport of Systems of Systems的疾病和分析的信息, Management, UT Dallas, 2018 ● A Machine Learning Approach for Understanding Population-Level Health Effects of E-Cigarettes, Conference on Health IT and Analytics (CHITA), 2017 ● Are Electronic Nicotine Delivery Systems (ENDS) a Safe Substitute for Cigarettes Among Asthma Patients: A Social Media Based Analysis, INFORMS Annual Meeting, Houston, Texas, USA, 2017 ● Domain Adaptation for Signal Extraction from Large Social Media Datasets, the INFORMS Conference on Information Systems and Technology (CIST), Houston, Texas, USA, 2017 ● Are Electronic Cigarettes a Safer Substitute for Cigarettes for Asthma Patients, Workshop on Information Technologies and Systems (WITS), Seoul, South Korea, 2017 ● A Comprehensive Analysis of Risk Factors for Asthma: Based on Machine Learning and Large Heterogeneous Data Sources, Iowa State University, 2017 ● Extracting Signals from Social Media for Chronic Disease监视,国际数字健康会议(DigitalHealth'16),蒙特利尔,加拿大魁北克,2016年●社交媒体上有关电子烟的关键对话趋势和模式,信息会议,田纳西州纳什维尔,田纳西州,2016年,2016年
光频梳(OFC)是一种基于激光的技术,具有转化的计量学,可以以未经先验的精度实现时间和频率测量。超出了其最初的目的,OFC已在基本科学和新兴技术的各个领域采用,例如Au sosos驾驶和无线通信。然而,目前以高度重复速率产生低噪声OFC来源的挑战,具有较高的光学带宽阻碍了其全部潜力。为了应对这些挑战,非线性光纤中的超智能(SC)生成是一种有吸引力的方法,因为它可以在相对较低的泵功率下提供大带宽,但以噪声扩增为代价。本论文探讨了产生基于低噪声SC的OFC来源的新方法,以满足这些新型范围的不断增长的需求。第一个提出的解决方案是一种混合纤维,结合了两种SC生成制度的最佳品质。使用此纤维,可以将超低噪声纤维SC覆盖,覆盖930–2130 nm范围,相位相干性接近统一,频谱分辨出相对强度噪声(RIN)低至0。05%,平均0。01%在750 nm的带宽上,接近接近泵激光噪声的理论极限。这项工作的第二个重要结果是开发了一种新的数值方法,能够模拟在非线性纤维中传播的整个超快脉冲列车并研究其噪声性能的演变。最后,引入了空心核纤维,是达到新的SC制度(包括深紫外线和TW峰值功率)的一种有希望的方法。We use this model to corroborate and explain measurements of unprecedented low noise observed on a dual-comb SC source, including shot-noise-limited SC generation and up to 20 dB of RIN suppression.
#!/bin/bash #sbatch -job-name = tutorial2_r_container #sbatch-time = 00-00:01:00 #sbatch -mem = 4g #sbatch -partition = main #sbatch -patch -parth-yaim #sbatch -eartput -eartput -eartput = r_container-% -mail-user = your_email_address #sbatch -mail-type = begin,end,eend,fail,time_limit_80 #sbatch -account = accounting_group
摘要本研究应对高中生的有效教学遗传学的挑战,该主题尤其具有挑战性。利用人工智能(AI)在教育中的重要性越来越重要,该研究探讨了服务前教师在高中遗传学教育中基于AI-AI-Specions的整合的观点,指标和行为意图。正如这些职前教师(通常称为数字本地人)被期望将技术无缝地整合到我们技术依赖的社会中的未来教室中,因此了解他们的观点至关重要。这项研究涉及90名教师候选人,专门从事尼日利亚高等教育机构的生物学。采用计划行为理论,使用结构方程建模和独立样本t检验方法分析了调查响应。结果表明,感知到的有用性和构成规范是AI使用的重要预测指标,主观规范严重影响了职前教师的行为意图。值得注意的是,感知到的行为控制并不能显着预测意图,这与观察到的有用性不能保证AI采用。性别会差异地影响主观规范,尤其是在女性职前教师中,而在其他变量中没有观察到显着的性别差异,这表明可比的态度。这项研究强调了态度和社会规范在塑造职前教师对AI技术整合的决定中的关键作用。还讨论了有关含义,局限性和潜在的未来研究方向的详细讨论。
- 避免浪费资源(分配但未使用) - 增加资源可用性 - 允许其他用户的工作运行 - 提高Slurm Scheduler的效率 - 减少工作等待时间 - 更好的FairShare优先级,以便将来提交工作。
摘要:小麦是一种主食,在全球范围内消耗是淀粉和蛋白质的主要来源。近年来,全球小麦的摄入量有所增加,总体而言,小麦被认为是健康食品,尤其是在用全谷物制成产品时。然而,通常通过烘烤和/或烤面包在食用之前几乎总是对小麦进行处理,这可能导致形成有毒加工污染物的形成,包括丙烯酰胺,5-羟基甲基甲基膜(HMF)(HMF)和多环状芳族芳族芳族氢碳酸盐(PAHS)。丙烯酰胺主要由自由(可溶性,非蛋白质)天冬酰胺形成,并在Maillard反应中减少糖(葡萄糖,果糖和麦芽糖),并分类为2A组致癌物(可能与人类的致癌物)。它还具有高剂量的神经毒性和发育作用。HMF也是在Maillard反应中产生的,但也可以通过果糖或焦糖化的脱水来形成。经常在面包,饼干,饼干和蛋糕中发现。其分子结构指向遗传毒性和致癌风险。pah是一大类化合物,其中许多是遗传毒性,诱变,致伤性和致癌性。它们主要是由于有机物的不完全燃烧而在油炸,烘烤和烧烤期间形成的。可以随着食谱和加工参数的变化以及有效的质量控制措施而降低这些加工污染物的生产。但是,在丙烯酰胺和HMF的情况下,它们的形成也高度取决于谷物中前体的浓度。在这里,我们回顾了这些污染物的综合,影响其生产的因素以及可以采取的缓解措施以减少小麦产品中的形成,重点是遗传学和农学的作用。我们还审查了全球食品安全部门通过的风险管理措施。
