美利坚合众国政府和格陵兰政府寻求合作和扩大现有合作,以释放合作伙伴关系和未来倡议的巨大潜力,以加深和加强以下所述领域的美国与格陵兰之间的关系。这一共同的美国绿地合作计划(“共同计划”)旨在通过建立在2020年10月27日的外交票据中建立有关Pituffik(Thule Air Base基地)基础合同和相关事项的外交票据的建立,有助于加强美利坚合众国和格陵兰之间的伙伴关系和繁荣的关系。美国致力于与格陵兰政府合作,通过共同的努力,良好的实践和密切的协调来实现这一共同计划。共同计划的目标旨在通过外交参与,代理和事工合作来实现。
Solvay是一家开创性的化学公司,其遗产源于苏打灰过程中的创始人欧内斯特·索尔维(Ernest Solvay)的关键创新,致力于通过其9,000多名员工的员工在全球范围内提供基本解决方案。自1863年以来,Solvay利用化学的力量创造了创新的,可持续的解决方案,以满足世界上最重要的需求,例如净化我们呼吸的空气和我们喝的空气,维护我们的食物供应,保护我们的健康和健康,保护我们的健康,生态友善的服装,从而创造了我们的汽车更具可持续性和更清洁和保护我们的房屋。作为一家世界领先的公司,在2022年净销售额为56亿欧元,以及在欧洲版本布鲁塞尔和巴黎(SOLB)上的上市,其坚定不移的承诺使到2050年的过渡到了碳中性的未来,强调了其对可持续性和公平和公平和公平过渡的奉献精神。有关Solvay的更多信息,请访问Solvay.com或在LinkedIn上关注Solvay。
欧洲太空公司Isar Aerospace开发,建造和操作发射车,用于将中小型卫星以及卫星星座运送到地球轨道上,其任务是为子孙后代开放空间。总部位于德国慕尼黑,伊萨尔航空航天公司成立于2018年,已成长为来自50多个国家的400多名员工,在5个国际地点工作。来自国际投资者的总资金超过4亿欧元,为公司的开创性方法提供了强有力的支持,以通过垂直整合进行扩展和工业化启动车辆生产。ISAR航空航天的两阶段轨道发射车“ Spectrum”专为卫星星座部署而设计,从而可以访问最关键的技术平台之一:Space。更多信息:www.isaraerospace.com新闻联系人ISAR航空航天
摘要欧洲面临蓝胞菌病毒(BTV)血清型的定期介绍和重新引入,最近通过在野土中的血清型3的入侵而举例说明。尽管将疾病载体的长距离风散布,Culicoides spp。被认为是病毒介绍途径,但在风险评估中仍然被研究了。开发了一个定量风险评估框架,以估计BTV-3从撒丁岛侵入欧洲大陆的风险,该病毒自2018年以来一直存在。我们使用了大气传输模型(杂交单颗粒拉格朗日综合轨迹)来推断昆虫载体的空气传播分散的可能性。流行病学疾病参数量化了撒丁岛载体种群中病毒的流行及其在新区域引入后的第一次传播。假设最大持续时间为24小时,撒丁岛引入BTV的风险仅限于地中海盆地,主要影响意大利半岛,西西里,马耳他和科西嘉岛的西南地区。风险延伸到意大利的北部和中部地区,巴利阿里群岛以及法国大陆和西班牙,主要是最大持续时间长于24小时。关于矢量流条件和杂物复合物特异性参数的其他知识可以改善模型的鲁棒性。我们的框架为BTV介绍风险提供了空间和时间见解,是指导全球监视和准备对Epizootics的准备的关键工具。
PriceWaterHouseCoopers(即,普华永道)采访了在机械和设备行业运营的五家最大的芬兰公司,以分析其在业务中使用数字化的使用。这些公司覆盖了行业中26%以上的人员,并拥有大量分包商。访谈着重于范围内的直接或间接使用数字经济的访谈。采访的公司是Kone Oyj,Metso Oyj,Outotec Oyj,Ponsse Oyj和Valmet Oyj。数字化在这些公司的业务中起着越来越多的作用,无论是作为主要业务产品的一部分还是作为副产品的一部分(主要是与机械使用相关的服务)。但是,这些公司无法根据营业额或与数字化相关的成本提供确切的日期。
摘要欧洲面临蓝胞菌病毒(BTV)血清型的定期介绍和重新引入,最近通过在野土中的血清型3的入侵而举例说明。尽管将疾病载体的长距离风散布,Culicoides spp。被认为是病毒介绍途径,但在风险评估中仍然被研究了。开发了一个定量风险评估框架,以估计BTV-3从撒丁岛侵入欧洲大陆的风险,该病毒自2018年以来一直存在。我们使用了大气传输模型(杂交单颗粒拉格朗日综合轨迹)来推断昆虫载体的空气传播分散的可能性。流行病学疾病参数量化了撒丁岛载体种群中病毒的流行及其在新区域引入后的第一次传播。假设最大持续时间为24小时,撒丁岛引入BTV的风险仅限于地中海盆地,主要影响意大利半岛,西西里,马耳他和科西嘉岛的西南地区。风险延伸到意大利的北部和中部地区,巴利阿里群岛以及法国大陆和西班牙,主要是最大持续时间长于24小时。关于矢量流条件和杂物复合物特异性参数的其他知识可以改善模型的鲁棒性。我们的框架为BTV介绍风险提供了空间和时间见解,是指导全球监视和准备对Epizootics的准备的关键工具。
全球变暖影响了格陵兰的气候,包括格陵兰冰盖(Gris),其外围冰川和冰盖(GIC)以及周围无冰的苔原(Bintanja&Selten,2014; Mernild et al。,2015; Shepherd&Wingham,2007; imbie Team,2020;北极扩增会导致绿地过度变暖(Zhang等,2022),降水降雨而不是下雪(Dou等,2019; Huai等,2021; Serreze等,2009)。对于强烈的气候变暖场景,降雨甚至有望成为北极降水的主要形式(Bintanja&Andry,2017年)。Screen和Simmonds(2012)表明,格陵兰降雪的减少主要是由于1989 - 2009年期间降水阶段的变化(降雪至雨)引起的,而总降水仍然在很大程度上恒定。dou等。(2019)发现,融化季节液体沉淀的增加是北极海冰融化的关键因素。详细了解降雪到降雨变化背后的过程也将有助于更准确地评估对水文学/径流,永久冻结,生态系统,海冰静修和冰川融化的影响(Bintanja,2018年)和链接的社会生态系统(McCrystall等人,20221年)。
LIST OF TABLES ....................................................................................................... 4
摘要:本文估算了17个格陵兰气象站的降雨量,从原位降水量计测量到7种不同的降水相方案,到分开的降雨量和降雪量。为了纠正未成年人的雪/雨馏分,我们随后使用动态校正模型(DCM)进行自动气象站(AWS,PLUVIO仪表)和配备人员的回归分析校正方法(Hellmann Gauges)。累积总数的观察结果从5%到57%不等,降雨占格陵兰沿海地区年度降水总数的相当一部分,南部的降雨分数最高(Narsusuaq)。每月降水和降雨总数用于评估区域气候模型RACMO2.3。该模型实际捕获每月降雨和总降水量(r 5 0.3-0.9),其降雨相关性通常更高,而降雨相关性较高,而降雨量的降雨量(1.02-1.40)小于降雪量(1.27–2.80),因此观察结果更强大。,从1958年到现在的水平分辨率为5.5 km,模拟周期,Racmo2.3是研究格陵兰降雨的空间和时间变异性的有用工具,尽管可能需要进一步的统计降低降低降低降低量来解决陡峭的降雨梯度。