核磁共振 (NMR) 实验的模拟可以成为提取分子结构信息和优化实验方案的重要工具,但在传统计算机上对于大分子(如蛋白质)和零场 NMR 等方案通常难以处理。我们展示了 NMR 光谱的第一个量子模拟,使用捕获离子量子计算机的四个量子比特计算乙腈甲基的零场光谱。我们使用压缩感知技术将量子模拟的采样成本降低了一个数量级。我们展示了 NMR 系统的固有退相干如何在相对近期的量子硬件上实现经典硬分子的零场模拟,并讨论了如何使用实验证明的量子算法在更成熟的设备上有效地模拟科学和技术相关的固态 NMR 实验。我们的工作为量子计算开辟了一个实际应用。
疫苗中通常含有佐剂,有助于增强抗原刺激免疫反应的有效性。分析佐剂疫苗的稳定性至关重要,但出于多种原因,它却极具挑战性。佐剂疫苗是不透明的悬浮液,而一些佐剂(如铝)会凝结在一起并沉淀在药瓶底部,从而干扰分析。疫苗悬浮液通常必须在测试前稀释,这会在打开药瓶时带来污染风险。一些疫苗必须进一步处理才能进行分析,因此疫苗不再处于“天然”状态。对于含有多种抗原的疫苗,这些问题甚至更加复杂。需要新的非侵入性方法,可以在不篡改或改变疫苗的情况下分析佐剂疫苗,并且可以实时进行。
1。Cyva C,Barthe P,... Sakakibara S,Alberrico F,Girlt E,Jacs,2003; 1508-1517 2。Codina A,Love JD,Li Y,Lazar MA,News D,Schwabe JW,Sci A.2005; 102(17):6009-6 3。 GW Hax,Bent O,Malmstrom J,J Pharm Sci,2019:108:3029(2019)5。 Bradley SA,Jackson WC JR,PP的坐骑,肛门化学。 2019; 5.91(3):1962-19672005; 102(17):6009-63。GW Hax,Bent O,Malmstrom J,J Pharm Sci,2019:108:3029(2019)5。Bradley SA,Jackson WC JR,PP的坐骑,肛门化学。2019; 5.91(3):1962-1967
我们提出了非常规超导体SR 2 RUO 4中核磁共振NMR和旋转轨道效应的第一个原理研究。我们已经计算了均匀的磁化率,该磁化率与振幅中的实验非常吻合,但是,与较早的模型结果一样,我们发现计算出的硬轴是Z,与实验相反。我们还计算了所有原子的骑士移位和NMR弛豫率,并再次找到了整体良好的一致性,但是与实验相同特定特征(例如骑士移动各向异性)的重要偏差。我们的结果表明,在基于密度功能的计算中,SR 2 RUO 4中的相关性导致轨道效应低估。我们还认为,轨道极化在易感性中的相对贡献(10-15%)也是一个低估的“实验”值。我们讨论了O和Ru骑士在施加域的所有方向上跨过超导转变的令人困惑的不变性。我们表明,这一事实无法通过意外取消或旋转的散射来解释,因为它发生在某些元素超导体中。我们还指出,偶极子和轨道高铁对SR 2 RUO 4中的骑士移动的贡献很大,再加上轨道依赖性超导性的可能性,要求修改超电导状态中骑士骑士偏移的标准理论。
https://doi.org/10.26434/chemrxiv-2024-vcdxr orcid:https://orcid.org/000000-0001-6613-9601 content content content content content contem许可证:CC BY-NC-ND 4.0
过去几年中,量子技术面临的核心挑战之一是寻找近期量子机器的有用应用 1 。尽管在增加量子比特数量和提高其质量 2、3 方面已经取得了长足的进步,但在不久的将来,我们预计可靠门的数量将受到噪声和退相干的限制——即所谓的嘈杂中尺度量子时代。因此,提出了混合量子-经典方法,以充分利用现有的量子硬件并用经典计算对其进行补充。最值得注意的是,量子近似优化算法(QAOA) 4 和变分量子特征求解器(VQE) 5 的发展。这两种算法都使用量子计算机来准备变分状态,其中一些变分状态可能无法通过经典计算获得,但使用经典计算机来更新变分参数。已经进行了大量实验,证明了这些算法的可行性 6 – 8 ,但它们对现实问题的影响仍不清楚。在基于模型的统计推断中,人们经常面临类似的问题。对于简单模型,可以找到似然值并使其最大化,但对于复杂模型,似然值通常是难以处理的 9,10。NMR 波谱就是一个很好的例子。对于应该使用的模型类型有很好的理解(公式 (1)),人们只需要确定适当的参数。然而,计算特定模型的 NMR 波谱需要在指数级大的希尔伯特空间中执行计算,这对经典计算机来说极具挑战性。这一特性是提出将 NMR 作为量子计算平台的最初动机之一。尽管已经证明 NMR 实验中不存在纠缠 12,13,但强相关性使其在经典上难以处理;也就是说,算子 Schmidt 秩呈指数增长,例如,这禁止有效的表示
Bc1-x l 的 NMR 和 X 射线结构的坐标已存放在 Brookhaven 蛋白质数据库中,登录号分别为 1LXL 和 1MAZ。Bcl-2 蛋白家族通过未知机制 1 调节程序性细胞死亡。这里我们描述了 Bcl-2 家族成员 Bcl- (参考文献 2) 的晶体和溶液结构。该结构由两个主要为疏水的中央 -螺旋组成,它们被两亲性螺旋包围。发现连接螺旋 l 和 2 的 60 个残基的环具有灵活性,并且对于抗凋亡活性而言不是必需的。三个功能上重要的 Bcl-2 同源区 (BHl、BH2 和 BH3) 3-5 在空间上非常接近,形成一个细长的疏水裂缝,可能代表其他 Bcl-2 家族成员的结合位点。 Bcl-x L 中 α-螺旋的排列让人联想到细菌毒素(特别是白喉毒素和大肠杆菌素 6 )的膜转位结构域。结构相似性可能为 Bcl-2 蛋白家族的作用机制提供线索。
用紫外线(= 254 nm)可视化,并用5%的乙醇溶液显示。熔点是在Yanagimoto微熔点设备(日本京都)的Yanagimoto微熔点设备上确定的。1 H NMR光谱在Agilent DD2 600-MHz NMR光谱仪(Agilent Technologies,美国加利福尼亚州)上记录。肽浓度在CD 3 CN中约为5.0 mm。相对于内部三甲基硅烷在0.00 ppm的情况下测量化学位移。使用二维相关光谱(2D-COSY)和旋转框架过度大冲突效应光谱(Roesy;混合时间= 500 ms)分配质子。高分辨率质谱(HR-MS)。
固态核磁共振(SSNMR)是一种强大的光谱技术,可以在原子分辨率下为各种样品提供独特的结构信息,从生物大分子到无机材料。可以从偶极重耦实验1,2获得有价值的结构信息,因为它们重新引入了耦合,该耦合与所涉及的旋转之间的距离立方体成反比。因此,这样的实验可以直接深入了解空间接近,甚至允许进行内部距离测量。对于同性核重耦实验,双量器(DQ)重耦方案非常有用,因为可以通过适当的阶段循环抑制来自未耦合旋转的信号(“ DQ滤波器”)。3,4当这种贡献主导频谱并掩盖耦合自旋对中所需的信号时,这是必不可少的,因为例如将核与低自然同位素丰度(Na)相关的情况,例如13 c(1.1%Na)或29 Si(4.7%Na)。5,6这种实验通常患有非常低灵敏度的可行性在近年来大大增加,这是因为通过具有魔法旋转的动态核极化(MAS-DNP)可实现的实质灵敏度增强。7,8有效的激发和DQ相干的重新分配对于成功实施DQ重新耦合实验至关重要。高DQ过滤效率(〜73%)可以从理论上