空间句法是一种分析建筑空间配置的工具。本文研究了一项关于研究中心建筑类型的研究。目的是确定所选建筑类型的空间布局,因为这会影响人们如何利用建筑空间。案例研究是美国国家海洋和大气管理局西南渔业科学中心。本研究使用现有布局计划的档案来配置建筑空间的空间句法。该研究使用对齐图作为可测量工具,检查了建筑物内部的寻路和渗透程度。结果表明,整个建筑的空间连接具有良好的空间配置,其中 70% 为私人空间。此外,布局空间定义明确,因为每个区域的寻路都具有良好的可达性。本研究表明,空间句法是建筑师了解空间功能的有效工具,因为它展示了量化建筑类型重要特征的建筑空间配置。
Acronyms ADC A nalog-to- D igital C onverter AIRS A tmospheric I nfra r ed S ounder AMSU A dvanced M icrowave S ounding U nit ATBD A lgorithm T heoretical B asis D ocument ATMS A dvanced T echnology M icrowave S ounder CCA C ircuit C ard A ssembly DN D ata N umber DPLX D i pl e x er EDR E nvironmental D ata R ecord EOS E arth O bserving S ystem EU E ngineering U nit EUMETSAT E uropean O rganization for the E xploitation of M eteorological S atellites GEO GEO location HAMSR H igh A ltitude M MIC S ounding R adiometer HIRS H igh resolution I nfrared R adiation S ounder HKPG H ouse K ee P in G IF I ntermediate F requency IMAS I ntegrated M ultispectral A tmospheric S ounder IMF I nstantaneous M easurement F requency IDPS I nterface D ata P rocessing S egment IR I nfra r ed LO L ocal O scillator LNR L ow- N oise R eceiver MHS M icrowave H umidity S ounder MMIC M onolithic M icrowave I ntegrated C ircuit MSU M icrowave S ounding U nit MUX MU ltiple X er MW M icro W ave MXR M i X e R NASA N ational A eronautics and S pace A dministration NEDT N oise- E quivalent D ifferential T emperature NGES N orthrop G rumman E lectronic S ystems NOAA N ational O ceanic and A tmospheric A dministration NPOESS N ational P olar-orbiting O perational E nvironmental S atellite S ystem NPP N POESS P reparatory P roject PLLO P hase L ocked L ocal O scillator POES P olar-orbiting O perational E nvironmental S atellite PRT P latinum R esistance T图仪质量计q quality a sessment qc q otaly c introl rdr rd a a a a rf ecord rf rf r adio fre ffe rfe r adimeter f ront e nd s s urface s urface a coustict w ave
准确预测云层仍然是一个挑战,尤其是与云层形成/消散相关的时间,这极大地影响了太阳辐射预测甚至风。预测复杂地形中的轮毂高度风仍然是一个挑战,因为即使使用 3 公里网格,我们也无法解决所有重要特征,而且也无法正确获取各种阻力源对模型的贡献——我们需要在该国不同地区的轮毂高度进行更多观测。当您需要某个点的时间序列数据时,通过 grib 或 netcdf 获取 HRRR 数据确实具有挑战性。是否有任何官方工具或数据主机可以使其更简单?
3 《天气法》于 2017 年 4 月 18 日颁布。 4 NHC 在 https://www.nhc.noaa.gov/cyclones/(2024 年 7 月 29 日访问)上托管活跃热带气旋产品。 NWS 天气预报办公室 (WFO) 发布内陆地区的风灾信息。此外,中太平洋飓风中心和关岛和美属萨摩亚的 WFO 为其各自的责任区发布热带气旋灾害产品。 5 这是一个称为地面实况数据的概念。现场测量也可用于确认或校准远距离收集的数据,例如从卫星收集的数据。与飞机观测相比,卫星数据对风暴位置和强度的确定性较低。 6 NOAA 于 2023 年 6 月 27 日宣布 HAFS 投入运营。HAFS 是 NOAA 的新飓风预报模型。 7 集合是一组以略有不同的初始条件或模型版本运行的计算机天气模型。集合旨在通过平均各种预报来提高预报的准确性,并提供有关预报不确定性的可靠信息。 8 请参阅 https://www.nhc.noaa.gov/verification/verify5.shtml(2024 年 7 月 30 日访问)。 9 请参阅 Landsea, CW 和 JP Cangialosi,2018 年:“我们是否已经达到热带气旋轨迹预报的可预报性极限?” Bull. Amer. Meteor. Soc.,2237-2243。
从佛罗里达群岛到印度洋-太平洋岛屿,浅水珊瑚礁对于健康、有弹性的沿海社区、生态系统和经济至关重要。繁荣的珊瑚礁提供关键服务,包括渔业、旅游和休闲机会,以及强大的海岸线保护,免受海浪、风暴和洋流的侵袭,仅在美国,每年珊瑚礁的价值就高达 34 亿美元 ( 1-2 )。珊瑚礁通过这些服务保护生命、财产和企业,并为 25% 的海洋物种提供栖息地 ( 3 )。因此,珊瑚礁的影响是深远的——无论是内陆还是外海。目前,珊瑚礁正面临着许多全球和地方压力,例如海洋温度升高、海洋酸化、不可持续的捕捞、沿海开发、采掘和休闲用途、污染、营养物输入、雨水径流、沉积和入侵物种。这些压力因素单独和累积起来都会降低珊瑚礁抵抗和从干扰中恢复的能力,如大规模白化、疾病爆发和风暴事件,而据预测,随着全球变暖,这些干扰将会增加 ( 4 )。
4 51.76 400 H 32 5 /4 52.8 400 H 32 /H 32 /20/5 53.246±0.08 2x140 /h /20 6/6 53.596±0.115 2x170 54.94 400 H /H 32 /20 9/10 55.5 330 H /H 32 /20 10/20 10/11 57.290344 2X155 /330 H /H 32 /H 32 /20 11 /12 57.290344 /20 13/14 57.290344±0.3222±0.022 4x16 h /h 32 /20 14 /15 57.290344±0.3222±0.010 4x8 h /h 32 /h 32 /20 15/20 15/26 57.290344±0.322222222±0.222±0.22±0.22±0.20 16 /32 /32 h 4 32 h 4 32 h 4 32 h 4 32 h 3 4 x 3 4 x 3 4 x 3 4 x 3 4 x 3 4 32 h 3 4 x 3 4 x 3 4 x 3 4 x 3 4 32 h 3 4 x 3 4 32 2000/4000 V /V 32 /17 < /div>
这种共享的北大西洋右鲸和海上风策略(以下简称“战略”)确定了许多行动,以在三个目标下实现共同的愿景:(1)缓解和决策支持工具; (2)研究和监测; (3)协作,沟通和外展。这些目标和行动将允许Boem,NOAA和我们的合作伙伴(包括OSW行业)之间进行协调,有效的合作;收集和应用最佳的科学信息和数据以及见解,以告知未来决策,包括监视和缓解计划;并采取有效措施来降低风险,避免并最大程度地减少对NARW的影响。立即减轻的减轻努力包括在内,避免在可能发生NARW的重大影响,在施工过程中建立噪声限制的领域,并向开发人员提供指导,以进行强大的声音验证(对于某些活动),以确保OSW的预期影响不超过OSW的预期影响。
文献计量研究人员最近同意,应使用百分位数而不是平均值来评估纸张计数。在此方法中,分配了一份论文的百分位等级(前1%,前10%等)基于其引用数量与给定集中所有其他论文的计数相比。的论文集,例如作者或研究小组的论文,以计算那些具有引用数量的论文的百分比(或一组百分位数)。实际上,研究人员倾向于专注于论文的百分比,其中引用数量排名在同一年和主题类别的同一数据库中所有论文中排名前10%。有关此方法的更多信息,请参见(Bornmann等人2012年; Leydesdorff等,2011; National Science Board 2012; Waltman等,2012年)。
本报告介绍了美国海岸警卫队 (USCG) 高频 (HF) 广播国家气象局 (NWS) 海洋天气预报的商业案例。这些广播包括语音、无线电传真和 SITOR。广播涵盖世界气象组织定义的气象区 IV、XII 和 XVI 内的预报。商业案例建立在《联邦公报》上提出的问题的公众评论和对接收海洋气象信息的选项的调查之上。征求公众意见为海员提供了 120 天的机会来评论他们对 USCG HF 广播和其他来源的使用、停止可能对他们的运营产生的影响以及在停止的情况下他们可能考虑的替代方案。对选项的调查是一项与公众意见分析分开进行的活动。选项是根据美国海岸警卫队和美国国家气象局已知的来源汇编而成的,随后在互联网上搜索了更多信息。选项包括公众意见中提到的替代方案。公众意见征询书收到了 1,100 多条评论。分析发现,821 条回复来自海上和/或公海运营商,这些运营商将受到这些广播中断的影响。该研究收到了许多来自公众的重复或扩大性评论。休闲用户的回复数量是商业用户的三倍。公众意见征询书
John Opatz:检查METPLUS验证系统中R2O实施的成功Johnna Infanti:通过评估统一预测系统(UFS)和北美多模型集合(NMME)的降水技能(通过模型评估工具(Metplus)Gwen Chen Chen Chen Chen recia:实时海洋范围:环境建模中心Jason Levit的全球验证:EMC验证系统:统一预测系统(UFS)模型的实时验证