ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 消毒剂残留浓度乘以与水接触的时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 五大湖密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时强化地表水处理规则 MCL 最大污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间THM 三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 残留消毒剂浓度乘以与水接触时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 大湖区密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时加强地表水处理规则 MCL 最高污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间 THM三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 残留消毒剂浓度乘以与水接触时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 大湖区密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时加强地表水处理规则 MCL 最高污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间 THM三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 残留消毒剂浓度乘以与水接触时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 大湖区密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时加强地表水处理规则 MCL 最高污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间 THM三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 残留消毒剂浓度乘以与水接触时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 大湖区密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时加强地表水处理规则 MCL 最高污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间 THM三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
r eference•Camenisch U,Nageli H. XPA基因,其产物和生物学作用。adv exp medbiol。2008; 637:28-38。 doi:10.1007/978-0-387-09599-8_4。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/19181108)•Cleaver JE,州JC。 人和眼核细胞中的DNA损伤识别问题:XPA损伤结合蛋白。 Biochem J. 1997年11月15日; 328(pt1)(pt 1):1-12。 doi:10.1042/bj3280001。 PubMed的引用(https://pubmed.ncbi。 nlm.nih.gov/9359827)或PubMed Central上的免费文章(https://www.ncbi.nlm.nih.g ov/pmc/pmc/pmc1218880/)•cleteaver je,thompson lh,thompson lh,richardson as astates jc jc jc。 紫外线敏感性疾病中突变的摘要:Xeroderma cipmentosum,Cockayne综合征和三神性疾病。 嗡嗡声突变。 1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。 Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。 mutat res。 2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。 2006.06.010。 Epub 2006年8月14日。 引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。 xeroderma色素组的优先结合与受损的DNA相结合。 生物化学。 1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。 基因。2008; 637:28-38。 doi:10.1007/978-0-387-09599-8_4。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/19181108)•Cleaver JE,州JC。人和眼核细胞中的DNA损伤识别问题:XPA损伤结合蛋白。Biochem J.1997年11月15日; 328(pt1)(pt 1):1-12。 doi:10.1042/bj3280001。PubMed的引用(https://pubmed.ncbi。nlm.nih.gov/9359827)或PubMed Central上的免费文章(https://www.ncbi.nlm.nih.g ov/pmc/pmc/pmc1218880/)•cleteaver je,thompson lh,thompson lh,richardson as astates jc jc jc。紫外线敏感性疾病中突变的摘要:Xeroderma cipmentosum,Cockayne综合征和三神性疾病。嗡嗡声突变。1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。 Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。 mutat res。 2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。 2006.06.010。 Epub 2006年8月14日。 引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。 xeroderma色素组的优先结合与受损的DNA相结合。 生物化学。 1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。 基因。1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。mutat res。2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。2006.06.010。Epub 2006年8月14日。引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。xeroderma色素组的优先结合与受损的DNA相结合。生物化学。1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。基因。引用PubMed(https://pubmed.ncbi.nlm.nih.go v/8218288)•satokata I,iwai K,Matsuda T,Okada Y,Tanaka K.人类DNA切除控制基因控制基因组的基因组表征,Xpac。1993 Dec22; 136(1-2):345-8。 doi:10.1016/0378-1119(93)90493-m。 PubMed引用(https://pubmed.nc bi.nlm.nih.gov/8294029)1993 Dec22; 136(1-2):345-8。 doi:10.1016/0378-1119(93)90493-m。 PubMed引用(https://pubmed.nc bi.nlm.nih.gov/8294029)
Yoshimitsu Nakanishi,1,2,3,4,18 Mayuko Izumi,1,2,2,3,4,18 Hiroaki Matsushita,3,5 Yoshihisa koyama,4,6,6,6 diego diez,7 dieoge diez,8 hyota takamatsu,8 hyota takamatsu,1,2 shohei koyama,1 shehei koyama,1 yumay 1,2 yumay 1,2 yum 1,2 Yumy 1,2 Yum.2 Yumiik,1,1,2 Yuta Yamaguchi,1,2 Tomoki Mae,1 Yu Noda,1 Kamon Nakaya,1 Satoshi Nojima,9 Fuminori Sugihara,10 Daisuke Okuzaki,4,11,11,12,12,15,15,15 Mashito,13 ,19, * 1呼吸医学和临床免疫学系,大阪大学,大阪大学565-0871,日本2号免疫病理学系,世界首要国际研究中心免疫研究中心倡议倡议中心研究中心(WPI-IFREC) Chugai Pharmaceutical Co. Ltd.研究部门有限公司,在247-8530,日本6神经科学与细胞生物学系,大阪大学医学研究生院,大阪565-0871,日本7成瘾研究单位,大阪精神病学研究中心,大阪医学中心,大阪大学,osaka apai Osaka 565-0871,日本10生物功能成像实验室,意愿单细胞基因组学),WPI-IFREC,大阪大学,大阪大学565-0871,日本12基因组信息研究中心,研究所研究所(RIMD),大阪565-0871,OSAKA 13 565-07,大阪大学565-0871,日本15号教育与研究中心(CIDER),大阪大学,大阪565-0871 NOLOGY(AMED- CRIEST),大阪大学,大阪大学565-0871,日本日本17号高级模态和DDS(CAMAD),Osaka 565 CORS
美国护理学院协会 (AACN) 美国大学注册和招生官员协会 美国学生政府协会 (ASGA) 本笃会学院和大学协会 (ABCU) 天主教学院和大学协会 大学理事会协会 高等教育家长/家庭计划专业人员协会 (AHEPPP) 宾夕法尼亚州独立学院和大学协会 高等教育定位、过渡和保留协会 (NODA) 天主教学院和大学学生事务协会 (ASACCU) C-Cue, Inc.(本科教育计算机联盟) 天主教校园事工协会 (CCMA) 大学乐队指挥全国协会 (CBDNA) 大学理事会 CFP 认证 宾夕法尼亚州大学合作教育协会 教育促进与支持委员会 (CASE) 独立学院委员会 国际教育交流委员会 (CIEE) 学术联盟 六西格玛认证委员会 威斯特摩兰县大经济增长联盟拉特罗布-劳雷尔谷商会 劳雷尔高地公司 国际教育研究所 国际学生交流计划 (ISEP) 利格尼尔谷商会 中大西洋工商管理学院协会 中部各州大学注册和招生官员协会 全国国际教育工作者协会 (NAFSA) 全国校园活动协会 (NACA) 全国大学招生顾问协会 全国大学和大学商务官员协会 全国大学和雇主协会 (NACE) 全国独立学院和大学协会 全国学生财务援助管理员协会 全国天主教教育协会
Branko Aleksic,医学博士,博士学位,1 Yukihiro Noda,Ph.D. 1 1 Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan 2 Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan 3 Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan 4 Health Care Promotion Department, Denso Corporation, Kariya, Japan ABSTRACT Purpose: Accurate评估药物依从性很重要;但是,在日本尚未建立适用于躁郁症患者的简单评估量表。在这项研究中,我们为精神病学领域的药物依从性进行了修改的日语版本,对药物影响和信念的简要评估(Bemib)(BEMIB),并研究了其可靠性和有效性。方法:从2006年4月到2006年4月以及2009年4月至2009年7月,使用日语版本的Bemib和药品态度态度库存10个问卷(DAI-10)进行了药物依从性评估,从2006年4月到2006年4月,访问了包括名古屋大学医院在内的多个设施的躁郁症患者。结果:日本版本的Bemib的Cronbachα系数为0.73。每个项目的四周重测可靠性系数和BEMIB总分数为0.39-0.68(p <0.05),阶层内相关系数为0.63(95%CI = 0.33-0.75,p <0.001)。讨论:针对躁郁症患者修饰的日本版本的Bemib足够可靠且有效。此外,在Bemib和DAI-10总分(Pearson的相关系数= 0.39,p <0.001)之间观察到显着的正相关,表明并发有效性就足够了。我们建议,躁郁症患者中这种药物依从性的简单评估量表适用于常规医学实践。关键字:Bemib,修改后的日语版本,药物依从性,可靠性,2012年7月11日获得的有效性 / 2012年11月13日接受 / 2012年12月21日发表,引言遵守性需要对患者的一部分进行积极的态度 - 接受自己的疾病并积极参与确定治疗政策。在一项评估依从性
外骨骼和矫形器经常用于促进运动障碍患者的肢体运动,因为它们可以使用脑电图 (EEG) 信号整合镜像疗法等经典治疗方法(Kirchner 等人,2013 年;Kirchner 和 Bütefür,2022 年)。除了触发外骨骼辅助外,EEG 还可用于推断运动意图(Kirchner 和 Bütefür,2022 年),这已被证明对于成功的神经康复至关重要(Noda 等人,2012 年;Hortal 等人,2015 年)。此外,EEG 还可用于推断人类观察或与之交互的机器人行为的主观正确性,正如 Iturrate 等人(2015 年)和 Kim 等人(2017 年、2020 年)在多篇论文中所证明的那样。为了验证辅助设备的正确性,深入了解患者感受到的支持水平非常重要。具体而言,必须评估患者是否感觉到机器人辅助系统所犯的错误。对于某些辅助设备,支持可以通过视觉观察到,并且可以根据从 EEG 信号中检测到的 ErrP 验证和调整主观正确性(Batzianoulis 等人,2020 年)。但是,对于患者佩戴的机器人,例如主动外骨骼或主动矫形器(Kirchner 和 Bütefür,2022 年),患者可能看不到但能感觉到不正确的行为。因此,研究外骨骼或矫形器中不正确行为的触觉检测是否会引发与视觉观察到的行为类似的事件相关电位 (ERP) 是有意义的。这些信息可用于纠正患者感知到的不正确行为[有关此已发布数据集的初步结果以及关于利用不同模式传输错误信息的进一步讨论,请参阅 Kim 和 Kirchner (2023)]。在脑电图研究中,当观察到错误行为(Iturrate 等人,2010 年;Kim 和 Kirchner,2013 年)、收到指示错误事件的反馈(Holroyd 和 Coles,2002 年)或在交互过程中发生错误(Kim 等人,2017 年)时,就会引发所谓的错误相关电位 (ErrP)。Chavarriaga 等人 (2014 年) 对此进行了全面的综述。此外,通过检测 ErrP 从脑电图中推断错误具有挑战性,因为它需要对相关模式进行异步分类(Kim 等人,2023 年)。这种异步分类通常会导致大量假阳性,因为与系统的交互时间较长或任务执行时间延长(Omedes 等人,2015 年;Spler 和 Niethammer,2015 年;Lopes-Dias 等人,2021 年)。在大多数研究中,视觉刺激用于诱发错误相关电位 (ErrPs)(例如,van Schie 等人,2004 年)。虽然一些研究