个人护理和制药行业使用乳液科学及其副产品广泛地制作乳霜和乳液,包括水和油溶成分。虽然预测冷却和加热仅占用于制造乳液系统的能源总支出的90%以上,但目前用于处理此类乳液的方法需要大量的时间和能量。乳液技术的冷过程将变得更加可取,而消费者已经开始对可持续和环境友好的产品和程序表现出兴趣。一种先进的冷乳化方法,用于制造一种局部剂量剂型,以纳米乳液的形式为先进的药物输送系统开发了一种,以克服热质药物的制造挑战,并在与常规局部剂量相比时具有可持续性且具有可持续性和环保性的成本效益。纳米乳液的产生将导致一种具有热力学稳定的配方,并结合了两个不混溶的液体,以在存在适当的稳定剂的情况下创建稳定的同质组合。纳米乳液的稳定性和液滴大小使其与常规乳液不同。较小的液滴尺寸可以通过皮肤表皮增加其稳定性和穿透。在这篇综述中,重点是提供对冷乳化的基本理解,作为纳米乳液的制剂技术,其表征,应用,各种专利以及涉及纳米乳液的临床试验。这些信息可以作为进一步开发和改进涉及纳米乳液的技术和技术的基础。
边缘设备。先进的芯片设计正在降低微电子元件、设备和系统的能耗,同时提高速度、容量、可靠性和安全性等性能。应用包括人工智能、通信、计算和传感。各种策略都已经过测试,但通过整体方法共同设计几何、材料、电路和集成,仍有很大的空间将功耗降低到接近基本极限。这项挑战赛的总体目标是探索新材料和超越 CMOS 的设备、非冯·诺依曼架构和替代信息处理范式,以大幅降低能耗,以满足智能边缘设备和电路的特定应用需求。
纳米电子学是电子学的一个分支,涉及原子或分子尺度上的物质操纵,是近几十年来技术进步的基石。随着微型化、性能提高和能效的不断提升,纳米电子学为从量子计算到可穿戴设备等各个领域的变革性应用铺平了道路。在本文中,我们将探讨纳米电子学的一些新兴趋势及其对未来技术的影响。量子计算代表了计算领域的范式转变,利用量子力学原理执行传统计算机无法处理的计算。量子计算的核心是量子比特,它们可以同时存在于多个状态,实现指数并行,并可能比传统计算机更快地解决复杂问题。在纳米电子学中,量子比特的发展在很大程度上依赖于对单个量子系统(如电子或光子)的精确控制和操纵。人们正在探索各种方法,包括超导电路、捕获离子和基于半导体的量子比特。半导体量子计算的一个有前途的方向是使用硅基量子比特。硅是传统电子学中一种成熟的材料,具有多种优势,包括与现有制造工艺的兼容性和潜在的可扩展性。研究人员正在研究自旋量子比特等技术,这些技术利用硅中电子的固有自旋来实现可靠且可扩展的量子处理器 [1]。
《微系统与纳米工程》采用了虚拟特刊模式来加快出版流程,特刊论文以普通论文的形式发表。所有文章发表后,将整合成特刊,在期刊网站上发表。接受决定是滚动做出的。因此,鼓励作者尽早提交论文,而不必等到提交截止日期。
摘要:基于二维(2D)材料的微型和纳米机电系统(MEMS和NEMS)设备与硅基碱对应物相比揭示了新型功能和更高的灵敏度。2D材料的独特性能增强了对2D材料基于纳米机电设备和传感的需求。在过去的几十年中,使用与MEMS和NEMS集成的悬浮2D膜出现了质量和气体传感器,加速度计,压力传感器和麦克风的高性能敏感性。通过MEMS/NEMS传感器提供了积极感测的微小变化,例如在动量,温度和应变的小小变化的被动模式下传感。在这篇综述中,我们讨论了NEM和MEMS设备中使用的2D材料的材料准备方法,电子,光学和机械性能,除了设备操作原理外,制造路线。
凯西·林德(Kathy Lind)上个月由县专员介绍了该物业的空中和分区地图。AW分区的区域已被包裹,不是农村庄园的一部分。Wildcat Creek穿过该物业的北角。现有的私人驱动器将为农村庄园中的所有地段提供服务。驱动器在一个远处内。在西北角存在第二个差异,将使居住在这里的每个人都可以进入公共区域的小溪。在施工计划中有四个条件,最终平台有五个条件。请愿人已要求允许保证。工作人员建议有条件的主要批准。
混合纳米电子器件通过将超导体的宏观相位相干性与半导体器件的电荷密度控制相结合,为开发量子技术提供了一个有前途的平台。本论文重点研究混合纳米电子器件的建模及其在研究物质拓扑相和量子信息处理中的应用。论文的第一部分介绍了一种用于静电建模的新型无轨道方法。该方法显著提高了界面附近密度分布的精度,同时最大限度地降低了计算成本。接下来,我们使用基于对称性的非局部电导谱方法来研究多端器件中的传输测量。这种方法可以识别自旋轨道耦合的方向并检测非理想效应。然后,论文探讨了铁磁混合异质结构,它通过结合磁性绝缘体插入物来实现对有效磁场的局部控制。我们研究了超导和铁磁邻近效应的相互作用,并提出了一种用于展示拓扑超导的平面设计。我们还展示了如何使用该平台来实现可配置的 0-π 约瑟夫森结,以及如何实现非正弦电流相位关系。最后,本论文研究了以高次谐波为主的结在超导量子比特中的应用。我们提出并研究了一种耦合方案,用于在异质量子架构中纠缠奇偶校验保护的量子比特和可调谐通量的传输子。
网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。
摘要:大肠癌是全球癌症死亡的第三大最常见的恶性肿瘤,也是第二个主要原因。多项研究已将患者血清中癌细胞的抗原水平与疾病预后不良联系在一起。因此,检测低水平的癌症抗原的能力在较早的疾病诊断,评估和复发监测中应用。现有的癌症抗原检测方法通常需要多种试剂,训练有素的操作员或复杂的程序。一种减轻这些问题的方法是横向流量测定,这是一个基于纸张的平台,允许在复杂混合物中检测和量化目标分析物。测试很快,是护理点,拥有较长的保质期,并且可以在环境条件下存储,使其非常适合在各种设置中使用。虽然侧向流程通常使用球形金纳米颗粒来产生经典的红色信号,但最近的文献表明,球形的替代形态可以提高检测的极限。在这项工作中,我们报告了替代金纳米颗粒形态的应用,金纳米形状(长度约为35 nm)和金纳米酮(直径约为90 nm),用于癌甲型抗原的横向流量测定法。在比较测定中,与市售的球形金纳米颗粒相比,对于相同的抗体载荷和总金含量而言,金纳米酮的检测极限约为2倍,而每种测试中金纳米酮的数量〜3.2×x降低。在全面优化的测试中,使用金纳米酮获得了14.4 pg/mL的限制,比以前报道的基于金纳米粒子基于金纳米粒子的癌细胞抗原抗原横向流动测定法相比有24倍改善。关键字:黄金,纳米颗粒,侧流测定,癌症,生物标志物,等级纳米颗粒,定量,癌症抗原
在这项工作中,我们描述了心力衰竭患有睡眠呼吸暂停综合征的患者,随后在神经术心脏移植(OTS)之后,并通过过度压力通气影响它。睡眠呼吸暂停(SA)是心血管疾病的独立危险因素。通过临床症状可能是持久的疲劳和过度的每日嗜睡,认知功能的障碍,包括短期记忆和浓度疾病恶化,行为障碍,例如现实,侵略性,动机丧失和所谓的夜间症状:ronchopathy(打s),频繁呼吸呼吸 - 夜生活,nykturia,睡眠碎片以及在口中或早晨的醒来后觉醒典型的干旱后。sa诊断基于多求人瘤或polygrafiilly检查的结果,其治疗在于所谓的非侵入性超压通气。sa可以导致现有心血管疾病的新或恶化的发展,因此最终导致心力衰竭的发展(HF),这是由功能或结构异常引起的临床综合征导致心力衰竭。尽管捷克共和国和全球的心力衰竭发生,尽管开发了新的有效药物和非药物手术,包括原位性心脏移植。©2023,čks。