∗ 斯坦福大学和拍卖学。电子邮件:milgrom@stanford.edu † 斯坦福大学和拍卖学。电子邮件:mwatt@stanford.edu。感谢 Mohammad Akbarpour、Martin Bichler、Robert Day、Ravi Jagadeesan、Fuhito Kojima、Shoshana Vasserman 以及斯坦福大学、苏黎世大学、NBER 市场设计工作组、西蒙斯劳弗数学科学研究所和第 32 届石溪国际博弈论会议的研讨会参与者,以及对本项目提出的有益意见和建议的审稿人。本文的扩展摘要发表在第 23 届 ACM 经济与计算会议 (EC'22) 的论文集上,2022 年 7 月 11 日至 15 日,美国科罗拉多州博尔德,题为“无凸性市场的线性定价机制”。本文的早期草稿以“非凸经济的瓦尔拉斯机制和约束形式第一福利定理”为题发表。米尔格罗姆感谢美国国家科学基金会 (拨款编号 SES-1947514) 的支持。瓦特感谢斯坦福大学 Koret 奖学金、Ric Weiland 研究生奖学金和 Gale and Steve Kohlhagen 经济学奖学金的支持。
We provide a unified analysis of two-timescale gradient descent ascent (TTGDA) for solving structured nonconvex minimax optimization problems in the form of min x max y ∈Y f ( x , y ), where the objective function f ( x , y ) is nonconvex in x and concave in y , and the constraint set Y ⊆ R n is convex and bounded.在凸 - 孔循环设置中,单次梯度下降(GDA)算法被广泛用于应用中,并且已被证明具有强大的收敛保证。在更一般的设置中,它可能无法收敛。我们的贡献是设计ttgda算法,这些算法是有效的,这些算法超出了凸形 - 连接设置,并有效地确定了函数φ(·)的固定点:= maxy∈Yf(·f(·,y)。我们还建立了解决求解平滑和非平滑concove-concave minimax优化问题的复杂性的理论界限。据我们所知,这是对非凸端优化的TTGDA的第一个系统分析,阐明了其在训练生成的对抗网络(GAN)和其他现实世界应用问题中的卓越性能。关键字:结构化的非凸极最小值优化,两次尺度梯度下降,迭代复杂度分析
摘要非convex优化的主要挑战是找到一个全局最佳的挑战,或者至少要避免“不良”本地最小值和毫无意义的固定点。我们在这里研究算法与优化模型和正则化相反的程度可以调整以实现这一目标。我们认为的模型是许多局部最小值的非概念,不一致的可行性问题,在这些点上,这些点之间的差距在这些点的附近最小。我们比较的算法都是基于投影的算法,特别是环状投影,环状放松的Douglas-Rachford算法以及放松的Douglas-Rachford在产品空间上分开的。这些算法的局部收敛和固定点已经在详尽的理论研究中表征。我们在轨道分辨光子发射光谱(ARPES)测量的轨道层析成像的背景下演示了这些算法的理论,这些理论都是合成生成和实验性的。我们的结果表明,虽然循环投影和循环恢复了Douglas-Rachford算法通常会汇聚最快,但重新使用Douglas-Rachford在产品空间上划分的方法确实从其他两个算法的不良本地算法中移开,最终从其他两个算法中掌握了当地最小值的群库,与全球范围的群体相关点,以确定了与全球范围相对应的群体的关键点。
摘要 - 我们的研究在多代理网络中分发了大数据非convex优化。我们考虑平滑(可能)非凸功能的总和的(受约束的)最小化,即代理的总和,以及凸(可能)的凸(可能)非平滑正常器。我们的兴趣是大数据问题,其中有大量变量需要优化。如果通过标准分布式优化算法进行处理,则这些大规模问题可能会因为每个节点的局部计算和通信负担过高,因此可能会棘手。我们提出了一种新颖的分布式解决方案方法,在每种迭代中,代理以不协调的方式更新整个决策向量的一个块。为了处理成本函数的非概念性,新型方案取决于连续的凸近似(SCA)技术,结合了一种新颖的块驱动的推动力共识方案,该方案对执行局部扩展的块状操作和梯度平均跟踪非常有用。建立了渐近收敛到非凸问题的固定溶液。最后,数值结果显示了提出的算法的有效性,并突出了块维度如何影响通信开销和实际收敛速度。
摘要 - 在本文中,我们开发了一种机器学习,以优化电网的实时操作。尤其是,我们学到了可行的解决方案,这些解决方案具有可忽略不计的最佳差距的交流最佳功率流(OPF)问题。AC OPF问题旨在确定电网的最佳操作条件,以最大程度地减少功率损失和/或发电成本。由于解决了这个非概念问题的计算挑战,许多努力都集中在线性化或近似问题上解决AC OPF问题,以解决更快的时间范围内的AC OPF问题。但是,其中许多近似值可能是实际系统状态的相当差的表示,并且仍然需要解决优化问题,这对于大型网络来说可能很耗时。在这项工作中,我们学习了系统加载和最佳生成值之间的映射,使我们能够找到近乎最佳和可行的AC OPF解决方案。这使我们能够绕过传统的非convex AC OPF问题,从而导致网格运营商的计算负担显着减少。
摘要 - 由于城市化,对供水目的的电力需求正在稳步增加。因此,由于电力驱动的水泵的广泛部署,水分配网络(WDN)正变得能量密集型。水泵的能量效率运行是WDN操作员的重要关注点。为此,本文提出了最佳的水流(OWF)问题,以最佳地安排泵和阀门,目的是最大程度地降低泵的功耗,同时考虑了WDN中依赖于流量的泵的效率。由此产生的OWF问题是混合成员非线性程序(MINLP)。该问题包括由于WDN液压学而引起的差异(非凸)目标和非凸的约束,并且很难解决。一种新型的基于线性近似方法的方法用于克服非凸液压约束。此外,Dinkelbach的算法用于应对分数泵功率目标。最后,开发了一个称为最佳水流(C-OWF)的求解器,该求解器依赖于解决一系列混合整体线性程序。通过仿真软件Epanet验证的案例研究说明了与常规基于规则的设计相比,C-OWF在接近最大效率和降低泵功率的泵方面的好处。索引术语 - 水分配网络,混合企业计划,最佳水流,连续近似,分数编程
需求响应是智能电网在利用公用事业与其客户之间及时交互以提高电力网络的可靠性和可持续性时的新兴应用。本文调查了需求响应和交流最佳电力流的联合协调,并削减了可再生能源资源,不仅可以节省发电成本的总量,可再生能源降低成本和价格弹性需求成本,还可以管理各种类型的需求响应限制和GRID操作约束的总体电力负载的波动。它的在线实施非常具有挑战性,因为未来的统计数据是无法预测的。集中式和分布式模型预测控制(CMPC和DMPC)的方法分别针对在线调度问题的集中式计算和分布式计算提出了基于基于的方法。CMPC可以为DMPC提供基线解决方案。DMPC非常具有挑战性,可以在每个时间插槽中调用非convex优化问题的分布式计算。为此具有挑战性的DMPC提出了一种新型的乘数(ADMM)DMPC算法的交替方向方法。它在更新过程的更新过程中涉及迭代子例程计算,这些变量可以有效地处理困难的非convex约束。已经进行了全面的实验来测试所提出的方法。仿真结果表明,DMPC与其基线对应物(CMPC)之间的客观值差距均在1%之内,进一步验证了拟议的基于ADMM的DMPC算法的有效性。
本调查提供了全面的概述,概述了电力系统的分布式优化和机器学习的最新进展,该进展非常关注最佳功率流(OPF)问题。我们介绍了凸出放松和非凸优化的分离算法,突出了关键算法成分和实施的实际考虑。此外,我们探索了分布式机器学习的新兴领域,包括深度学习和(多代理)增强学习,及其在OPF和电压控制等领域的应用。我们调查了选择和学习之间的协同作用,尤其是在学习辅助分布式优化的背景下,并对分布式实时OPF进行了首次全面调查,以解决时间变化的条件和约束处理。在整个调查中,我们强调了诸如数据效率,可伸缩性和安全性等实际考虑因素,旨在指导研究人员和从业人员开发和部署有效的解决方案,以获得更有效和弹性的功率网格。