。此外,由于尿液可以在家中自我收集,因此这种远程标本的收集能力可以帮助达到服务不足的人群,并在人群范围内实现更有效的癌症筛查。尽管TR-CTDNA方法具有巨大的潜力,但与血液ctDNA相比,关于Tr-CTDNA检测效率的报道混杂(3-7)。对TR-CTDNA进行分析的潜在至关重要因素是知道尿液中存在的Tr-ctDNA片段的长度,因为这会影响测定设计,以在Tr-CTDNA检测中进行最佳灵敏度。迄今为止,已经有关于Tr-ctDNA片段长度的对比报告。基于PCR的TR-CTDNA研究,当使用缩短大于60 bp(4、8、9)时,在检测方面已显示出更大的成功,这是两项最近的下一代测序(NGS)研究(NGS)研究,该研究专门针对TR-CTDNA,表明中间长度的中间长度为112 bp(10)或101 bp(11)或较高的研究表明,与一项较高的comptions(相比),与一项较高的表现相结合。控件(11)。报告的NGS结果的限制是使用的特定库制备方法(例如,双链DNA [dsDNA]库制备方案,基于杂交的ctDNA片段捕获)容易偏向于恢复较短的片段,尤其是超级片段,尤其是超级片段(尤其是<50 bp)(12)(12)。为了检验这一假设,我们利用了能够捕获最小片段的单链NGS方法来开发TR-CTDNA大小的更完整的曲线。鉴于在非癌症环境中对无细胞的无细胞DNA(CFDNA)的研究(例如,孕妇尿液中的胎儿DNA或结核病患者的结核分枝杆菌DNA的胎儿DNA(13,14)(13,14)报道了跨性别的CFDNA是超消除的(<50 bp),我们可以彻底crunder(<50 bp) - 均可能是癌症。尿液。如结果所示,我们的数据表明TR-CTDNA是超短症(<50 bp),可在多种非动物癌症类型中检测到。除了单链DNA(SSDNA)NGS研究外,我们开发了一种基于液滴数字PCR(基于DDPCR)的测定法,以测量尿液中的TR-CTDNA,该测量提供了绝对的量化,更高的精度,更高的精度和更高的吞吐量。我们设计了此测定方法来研究患有HPV +口咽鳞状细胞癌(OPSCC)的患者。在此类患者中,HPV DNA序列在血液循环中以CTDNA为单位,我们假设可以通过DDPCR在尿液中检测到肾脏肾小球屏障的ctDNA片段。HPV ctDNA代表了TR-CTDNA的DDPCR分析开发的理想靶标,因为(a)90%的HPV + OPSCC患者共享单个HPV亚型HPV16的序列,因此,单个HPV16 TR-CTDNA分析可以覆盖大型患者; (b)由于HPV是一个非人类序列,因此预计没有HPV +癌症患者的“背景”信号将很低; (c)HPV16可以在肿瘤基因组内的多个位点整合,从而导致每个肿瘤基因组的信号更高。因此,我们试图开发一种能够从HPV + OPSCC患者的尿液中检测到尿液中超常用的HPV16 TR-CTDNA片段的第一代DDPCR分析。值得注意的是,与HPV +宫颈癌的设置不同,可以将肿瘤DNA直接沉积到尿液中,HPV16 HPV16信号在HPV + OPSCC患者的尿液中必然是跨性别的。我们将此测定(42 bp扩增子)与常规长度测定(77 bp amplicon)进行了比较,发现靶向超短片段对于可靠的尿液TR-CTDNA检测至关重要。利用超短扩增子测定法,我们在HPV + OPSCC患者的尿液中获得了TR-CTDNA检测,这些尿液与匹配的血浆CTDNA的结果一致。此外,使用小病例系列中的纵向尿液样品,我们展示了概念证明,用于早期发现癌症复发。因此,我们的结果表明,通过靶向超短DNA片段,TR-CTDNA成为HPV + OPSCC检测的可行方法,并且有可能在治疗后进行癌症复发监测。
大多数Libs都包含各种材料的复杂性,并侵入了阴极,阳极,电力和分离器的四个主要成分。它还由从软材料(例如包装材料和粘合剂)到陶瓷,碳和金属材料(如当前收集器,导电添加剂和外部标签)组成的各种材料。[11,12]了解每种材料的个体特征以及电池内的降解行为引起的潜在缺陷对于验证安全性和可靠性至关重要。[7,13]通过广泛的研究,电池老化的主要起源已被确定为活性材料晶体结构的降解[14-16],并且由于电极/电解质界面的不稳定性,化学和电化学侧面的反应。[17 - 20]这些发现提供了有关解决学术界和行业问题的见解,并通过推进制造技术来验证绩效可靠性。然而,面向性能的细胞设计和高尺度制造的意外细胞失衡会增加电池故障和火灾的风险。[21 - 24]在制造过程中很难检测出意外的故障或小错误,并且可以被视为在极端工作条件下可能出现的“潜在缺陷”。[25 - 27]此处的“潜在”缺陷术语是指在实际使用前进行合理彻底检查无法发现的电池内部的故障。例如,几个潜在缺陷可能包括无法完全尽管细胞制造过程已经智能自动化,但确定细胞的断层类型和失败模式并寻求潜在缺陷的位置仍然是一个挑战。
本综述讨论了人工智能 (AI) 算法在体外受精程序中植入前遗传检测中无创预测胚胎倍性状态的应用。目前的黄金标准,即非整倍体的植入前遗传检测,具有诸如侵入性活检、经济负担、结果报告延迟和结果报告困难等局限性。本文探索了无创倍性筛查方法,包括囊胚腔液取样、废培养基检测以及使用胚胎图像和临床参数的人工智能算法。人们已经使用不同的机器学习算法开发了各种人工智能模型,例如随机森林分类器和逻辑回归,这些模型在预测整倍体方面表现出不同的性能。静态胚胎成像与人工智能算法相结合在倍性预测方面表现出良好的准确性,其中胚胎排名智能分类算法和 STORK-A 等模型的表现优于人工评分。通过人工智能算法分析的延时胚胎成像也显示出预测倍性状态的潜力;然而,纳入临床参数对于提高这些模型的预测价值至关重要。嵌合性是胚胎分类的一个重要方面,但在人工智能算法中经常被忽视,应该在未来的研究中加以考虑。将人工智能算法集成到显微镜设备和胚胎镜平台中将有助于进行无创基因检测。进一步开发优化临床考虑并纳入最低必要协变量的算法也将提高人工智能在胚胎选择中的预测价值。基于人工智能的倍性预测有可能提高妊娠率并降低体外受精周期的成本。(Fertil Steril 2023;120:228 – 34。2023 年,美国生殖医学会。)关键词:人工智能、机器学习、无创基因筛查、延时成像、辅助生殖
摘要 — 双谱是频域分析中一种革命性的工具,它通过捕获频率分量之间的关键相位信息,超越了通常的功率谱。在我们的创新研究中,我们利用双谱分析和解码复杂的抓握动作,收集了来自五名人类受试者的脑电图数据。我们用三个分类器对这些数据进行了测试,重点关注幅度和相位相关特征。结果突出了双谱深入研究神经活动和区分各种抓握动作的惊人能力,其中支持向量机 (SVM) 分类器表现出色。在二元分类中,它在识别强力抓握方面实现了惊人的 97% 的准确率,而在更复杂的多类任务中,它保持了令人印象深刻的 94.93% 的准确率。这一发现不仅强调了双谱的分析能力,还展示了 SVM 在分类方面的卓越能力,为我们理解运动和神经动力学打开了新的大门。索引术语 —EEG(脑电图)、双谱、交叉双谱、握力解码和机器学习。
制定了FEP医疗政策手册中包含的政策,以协助管理合同福利,并且不构成医疗建议。他们无意代替或代替从业人员或其他医疗保健专业人员的独立医疗判断。Blue Cross和Blue Shield协会不打算由FEP医疗政策手册或任何特定的医疗政策,建议,倡导,鼓励或劝阻任何特定的医疗技术。与医疗技术相关的医疗决定应与成员/患者与其医疗保健提供者协商时严格做出。在医学上有必要的特定服务或供应的结论并不构成蓝十字和蓝盾服务福利计划涵盖(或支付)本服务或特定成员供应的代表或保证。
Debra Mathews,博士,文学硕士,约翰霍普金斯大学伯曼生物伦理研究所和约翰霍普金斯大学医学院;Amy Abernethy,医学博士,哲学博士,Verily;Atul J. Butte,医学博士,哲学博士,加利福尼亚大学旧金山分校;Juan Enriquez,工商管理硕士,Excel Venture Management;Bob Kocher,医学博士,Venrock;Sarah H. Lisanby,医学博士,美国国家精神卫生研究所;Timothy M. Persons,博士,理学硕士,普华永道美国公司;Rachel Fabi,博士,纽约州立大学上州医科大学;Anaeze C. Offodile II,医学博士,公共卫生硕士,纪念斯隆凯特琳癌症中心;Jacob S. Sherkow,法学博士,文学硕士,伊利诺伊大学伊利诺伊法学院、卡尔伊利诺伊医学院、欧盟中心和 Carl R. Woese 基因组生物学研究所;Rebecca D. Sullenger,公共卫生学士,杜克大学医学院;Emma Freiling,文学士,美国国家医学院;和 Celynne Balatbat,美国国家医学院文学士(前)
蜂蜜蜜蜂是探测宿主的强大模型系统 - 近距离菌群相互作用,也是自然生态系统和农业的重要传粉媒介物种。虽然细菌生物传感器可以对宿主与其相关的菌群之间发生的复杂相互作用提供批判性的见解,但缺乏非侵入性的肠道含量进行采样的方法,以及对工程师Symbionts的有限遗传工具,到目前为止,它们在蜜蜂中的发展促成了它们的发展。在这里,我们构建了一个多功能分子工具套件,以基因修改共生体,并在蜜蜂中首次报告了一种用于采样其粪便的技术。我们将天然的蜜蜂肠道细菌snodgrassella alvi作为IPTG的生物传感器,其工程细胞通过表达荧光蛋白的表达来稳定地定居于蜜蜂蜜蜂的肠道,并以剂量依赖性的方式暴露于骨骼。我们表明可以在肠道组织中测量荧光读数或在粪便中无创测量。这些工具和技术将使工程细菌的快速建立能够回答宿主 - 近距离微生物群研究中的基本问题。
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
1 1墨西哥神经生物学和国立大学,墨西哥Quere'taro校园,墨西哥Quere´taro,2,Me ofimem of Me ofico(UNAM)的工程学院(UNAM)研究部,避免失明的研究部,墨西哥,墨西哥,6个视觉健康封闭式,国立高等教育学院,狮子座大学,墨西哥国立大学(UNAM)Leo´n,墨西哥瓜纳武托拉,墨西哥,7雷尼娜·德尔·巴吉·伯(Elagent ofermations ofermations offiction ofermations ofermations promptation 302)(El offication 302) Quere´taro,Quere´taro,墨西哥,8墨西哥眼科研究所(IMO),I.A.P。 Centro Sur,Santiago de Quere´aro,Quere´aro,墨西哥