1 1,大阪大学医学院,日本大阪苏萨医学院研究生院,2临床基因组学系,大阪大学医学院,日本大阪市苏亚,大阪,日本大阪,3临床研究支持中心,Wakayama医科医院,Wakayama,Wakayama,Wakayama,日本Wakayama,日本Wakayama,4 5繁殖医学系东京繁殖诊所东京诊所,日本东京北部,日本6号生物医学统计司,大阪大学医学院综合医学系,大阪苏卡,日本大阪苏亚卡,日本环境医学和人口服务部7司1,大阪大学医学院,日本大阪苏萨医学院研究生院,2临床基因组学系,大阪大学医学院,日本大阪市苏亚,大阪,日本大阪,3临床研究支持中心,Wakayama医科医院,Wakayama,Wakayama,Wakayama,日本Wakayama,日本Wakayama,4 5繁殖医学系东京繁殖诊所东京诊所,日本东京北部,日本6号生物医学统计司,大阪大学医学院综合医学系,大阪苏卡,日本大阪苏亚卡,日本环境医学和人口服务部7司
心脏病占全球死亡人数的30%。早期干预和心血管异常的检测可以预防这种死亡。当前的研究提出了一种新的方法,该方法将卷积神经网络(CNN)和长期记忆(LSTM)结合在一起,以预测人心脏功能中异常。机器学习模型用于检测来自ECG和PCG信号的异常。这项研究中使用了两个突出的数据集,即Physionet 2016和Physionet 2017,用于培训和测试开发的机器学习模型。经验模式分解已用于预处理心脏声音信号和心电图信号。使用EMD可以将信号分解为其基本振荡组件,称为固有模式函数(IMF)。通过将信号与噪声比值与原始和过滤的PCG信号进行比较,可以评估该方法在降低噪声方面的有效性。特征提取是通过生成DeNO.信号的缩放图完成的。缩放图是通过连续小波变换(CWT)获得的。此后,一种称为CNN-LSTM的混合深度学习技术用于分类和训练模型。所提出的模型在分类和检测人心脏功能异常方面的精度为86%。
弗兰克尔进入了纳粹集中营。1923 年,他为维也纳报纸《今日报》撰写了一篇专门探讨战后年轻人生存问题的文章。他进入了维也纳大学医学院,对索伦·克尔凯郭尔产生了兴趣,他认为克尔凯郭尔具备成为精神病学家的素质。除了拥有医学博士学位外,他还加入了社会党,并与阿尔弗雷德·阿德勒合作,他认为阿德勒的个人心理学更关注生存问题,而关于弗洛伊德,他提到他贬低了对生命意义的探索。这足以让阿德勒将他驱逐出运动,而弗兰克尔则撰写了一份手稿,在其中捍卫了哲学与心理治疗之间的关系。1926 年,他首次使用了意义疗法这一术语,当时他属于医学心理学协会。1930 年,他毕业了,六岁时就成为了神经病学和精神病学专家。他在维也纳大学的神经病学诊所以及同城的精神病院工作。1937 年,他开设了私人诊所,但由于种族身份,次年他与家人一起开业。1942 年,他与蒂莉结婚,11 月,他和家人一起被党卫军监禁,他的妹妹通过获得澳大利亚签证才获救。这场磨难持续了两年半。他与妻子分居,失去了身份,被分配了注册号 119104。他经历了希特勒政权在特雷津、考弗林、图尔克海姆和奥斯维辛的暴行,他的父母、配偶和兄弟都死在那里。他试图理解不可能的存在。1945 年,他患上了瘀点性斑疹伤寒,导致厌食和精神错乱。晚上,他心里默念演讲稿。同年 4 月 27 日,他被释放,时年 40 岁。他被任命为维也纳综合医院神经内科主任。第二年,他出版了《集中营里的心理学家》一书,讲述了他在集中营的经历。这本书大获成功,第一版在三天内就销售一空,第二版在三个月内就销售一空。1947 年,他出版了《医学实践中的心理治疗》(La psicoterapia en la práctica médica),第二年又出版了《被忽视的上帝存在》(La presencia ignorada de Dios)。1956 年,他出版了《神经症理论与治疗》。1951 年至 1955 年间,他参加了一系列广播会议,这些会议后来被收录在作品《La psicoterapia al alcance de todos》(人人都能接触到的心理治疗)中。1969 年,他出版了最具代表性的作品:《寻找意义的人》,
和Y染色体微缺失(YCMS)约有15%至30%的男性不育病例(Hess and Renato de Franca,2008; Leaver,2016),Y染色体微缺失,尤其是遗传学学尤其是遗传学学的15%的严重的寡素蛋白酶和azoospermia and azoospermia(Arumugia)(Arumumia and Arumumia and and and and)。Vogt等。(1996)在1996年,根据它们在Azoospermic雄性中的不同阶段中的角色,在YQ11的三个子区域内划定了76个离散的“微骨骼”位点,将它们在功能上归类为AZFA,AZFB和AZFC区域,并将其分类为AZFC区域,并将其与AZFC区域(每种与男性的雌性精神病相关)。此外,Kent-First等。(1999)后来发现AZFD是位于AZFB和AZFC之间的独特基因结构。不育男性中YCM的检测率表现出显着的地理和种族差异,伊朗的AZF缺失率为24%,在美国为12%,在德国和奥地利为少于2%(Cioppi等人,2021年)。Haiyang Yu等人的研究。 (2023)在1,338名被诊断为Azoospermia或严重的寡素化质体的中国男性中,有9%的AZF缺失,占AZFC缺失为6%,而AZFA缺失约为0.8%。 Y染色体上的AZF区域包含多个关键基因以进行精子发生,而不同区域的微缺失可能会通过影响基因表达和功能而导致低氮杂的植物或Azoospermia。 AZFA区域中的微缺失导致仅Sertoli细胞综合征(SCO),其临床特征是睾丸萎缩和Azoospermia(Liu等,2017)。Haiyang Yu等人的研究。(2023)在1,338名被诊断为Azoospermia或严重的寡素化质体的中国男性中,有9%的AZF缺失,占AZFC缺失为6%,而AZFA缺失约为0.8%。Y染色体上的AZF区域包含多个关键基因以进行精子发生,而不同区域的微缺失可能会通过影响基因表达和功能而导致低氮杂的植物或Azoospermia。AZFA区域中的微缺失导致仅Sertoli细胞综合征(SCO),其临床特征是睾丸萎缩和Azoospermia(Liu等,2017)。作为AZFA区域具有对精子发生必不可少的基因,其缺失意味着即使使用诸如显微解剖睾丸精子提取的过程,也无法获得精子。缺失包含AZFB和AZFC导致Sertoli细胞综合征或精子毒性停滞,而受影响的个体通常会出现Azoospermia(Mahadevaiah等,1998; Yan等,2017)。AZFC缺失构成了最常见的AZF微骨骼类型,约占Y染色体微缺失的60%。近年来,由于其高表型异质性,研究人员专注于AZFC区域内的“部分缺失”,表现为多种程度的精子生成功能障碍:Oligozoospermia和Azooospermia和Azooospermia(Kühnert等人(Kühnert等人,2004年,2004年);然而,由于可能产生正常精子,具有AZFC缺失的个体可能代表了能够使生物后代的YCMS患者的唯一子集。欧洲雄科学院(EAA)和欧洲分子遗传学质量网络(EMQN)推荐SY84和SY86作为首选序列标记的位点(STS),用于评估AZFA缺失,因为它们的缺失高度表明完全表明完整的AZFA缺失(Krausz等,2014)。sts是指具有精确基因组位置的短而单拷贝的DNA序列,可以通过聚合酶链反应(PCR)检测到(Olson等,1989),作为人类基因组中的地标,以确定DNA的取向和指定序列的相对位置。在对AZF区域的研究中,STS被用作检测微缺失的基因座。通过通过PCR检查这些基因座,我们可以确定Y染色体AZF区域中微缺失的状态,这对于诊断男性不孕症非常重要。然而,最近的研究表明,在AZFA地区具有部分缺失的少数男性,包括涉及SY84或SY86的男性,表现出正常的精子发生和生育能力
基于过渡金属二色元和石墨烯基于原子上的薄材料,提供了有前途的途径,以解锁异性峰中旋转厅效应(SHA)的机制。在这里,我们为扭曲的范德华异质结构开发了一个微观理论,该理论完全融合了扭曲和混乱效应,并说明了对称性破坏在自旋霍尔电流产生中的关键作用。我们发现,对顶点校正的准确处理与从流行的iη和梯子近似获得的定性和定量不同。A pronounced oscillatory behavior of skew-scattering processes with twist angle θ is predicted, reflecting a nontrivial interplay of Rashba and valley-Zeeman effects and yields a vanishing SHE for θ = 30 ◦ and, for graphene-WSe 2 heterostructures, an optimal SHE for θ ≈ 17 ◦ .我们的发现揭示了障碍和对称性破裂,作为重要的旋钮,以优化界面。
表1:胸部X射线发现的三种优先策略中AI系统的性能指标,包括灵敏度,特异性,正预测值(PPV)和负预测值(NPV)。ppv:阳性预测价值 - 真正阳性的AI阳性病例的比例。npv:负预测价值 - 真正负面因素的AI阴性案例的比例。fpr:误报率 - AI标记的非癌症案件的比例。fnr:假阴性率 - AI错过的癌症病例的比例。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2025年1月1日发布。 https://doi.org/10.1101/2024.12.30.630839 doi:Biorxiv Preprint
乳酸脱氢酶 (LDH) 是一种存在于许多组织中的普遍酶,细胞损伤后会释放到血液中 [8] 。在病毒感染的情况下,LDH 水平升高可以作为组织损伤和代谢应激的间接标志物,通常与疾病严重程度相关。虽然 LDH 本身可能无法直接代表整体免疫状态,但它可以提供有关人体对病毒损伤的反应和器官损伤可能性的宝贵见解 [9] 。另一方面,C 反应蛋白 (CRP) 是一种高度敏感的炎症标志物 [10] 。它在感染或组织损伤后的快速增加反映了先天免疫系统的激活 [11] 。因此,CRP 水平升高表明炎症过程正在持续,这是对 COVID-19 等病毒感染的免疫反应的一个重要方面 [12] 。 D-二聚体 (D-Di) 是凝血系统激活的标志物,在评估凝血和纤溶之间的平衡方面起着关键作用 [13] 。这种平衡的异常会导致高凝状态,这是包括 COVID-19 在内的严重病毒感染的常见并发症。通过监测 D-Di 水平,我们可以了解血栓形成和其他凝血相关并发症的风险,这对于免疫功能低下的患者尤其重要 [14] 。
了解自旋波(SW)阻尼以及如何将其控制到能够放大SW介导的信号的点是使所设想的宏伟技术实现的关键要求之一。甚至广泛使用的磁性绝缘子在其大块中具有低磁化阻尼(例如Yttrium Iron Garnet),由于在最近的实验中观察到的,由于与金属层与金属层的不可避免接触,因此SW阻尼增加了100倍。,adv。量子技术。4,2100094(2021)]以空间解析的方式映射SW阻尼。在这里,我们使用扩展的Landau-lifshitz-gilbert方程对波矢量依赖性的SW阻尼提供了微观和严格的理解,并具有非局部阻尼张量,而不是常规的本地标量尺吉尔伯特damp,从Schwinger-keldysh norther-keldysh nortakys damper中衍生而成。在这张照片中,非局部磁化阻尼的起源以及诱导的波载体依赖性SW阻尼是磁绝缘子的局部磁矩与来自三种不同类型的金属叠层器的传导电子的局部磁矩的相互作用:正常,重型和altermagnetic。由于后两种情况下传导电子的自旋分解能量散布引起的,非局部阻尼在自旋和空间中是各向异性的,并且与正常金属覆盖物的使用相比,可以通过更改两层的相对方向来大大降低。
皮质脊髓神经途径对于运动控制和移动执行至关重要,在人类中,通常使用并发的电解质学(EEG)和肌电图(EMG)录音来研究它。但是,当前捕获这些记录之间高级和上下文连接性的方法具有重要的局限性。在这里,我们基于密度比的正交分解来介绍统计依赖估计量的新应用,以模拟皮质和肌肉振荡之间的关系。我们的方法通过学习特征值,特征函数和密度比的投影空间从信号实现的实现,解决皮质 - 肌肉连接性皮质的可解释性,可伸缩性和局部时间依赖性来扩展。我们通过实验证明,从皮质肌肉连通性中学到的本征函数可以准确地对运动和受试者进行分类。此外,它们揭示了确认运动过程中特定脑电图通道激活的通道和时间依赖性。我们的代码可在https://github.com/bohu615/corticomuscular-eigen-coder上找到。