→ 推荐做法 计算成本的另一种方法是使用出口孔或喷嘴直径和施加的压力来计算流量(见表格、图 19 孔口流量、附录图表部分)。 如果必须使用喷嘴,例如从面包上吹掉松散的面粉(图 6),则要确保出口喷嘴和产品之间的距离尽可能短,因为这样可以降低供应压力。 喷嘴应该只对准需要的区域,形成锥形(圆形区域)或扇形喷雾(长而窄的带子)等。 当需要覆盖非常长而窄的区域时,请并行使用喷嘴来形成帘幕,从而缩短到最远点的距离。 确保通向多个喷嘴的主供水管具有足够的直径,以免限制出口流量。
摘要 材料喷射 (MJT) 是一种增材制造工艺,其中构建材料以单个液滴的形式沉积。由于 MJT 具有潜在的高打印速度以及低设备和原材料成本,因此最近已扩展到金属加工领域。为了实现完整的 3D 功能,需要支撑结构,打印作业后必须将其移除。我们研究了水溶性盐和合适的喷嘴材料,以实现 MJT 工艺中的熔盐打印。在这里,熔体和喷嘴的润湿特性至关重要,因为明显的润湿会影响液滴的喷射。建立了一个固着滴接触角测试台,以评估三种盐或盐混合物(NaCl、KCl-NaCl 和 NaCl-Na 2 CO 3 )在六种不同喷嘴材料(各种陶瓷和石墨)(即潜在喷嘴材料)上的润湿特性。结果表明,除石墨上的 KCl-NaCl 外,大多数检查样品都具有较高的润湿趋势。这些材料在 MJT 测试台上的应用证实了我们研究结果的可行性。
摘要。工业上,为了获得不同的钢微观结构,人们长期使用运行台 (ROT)。钢的微观结构受冷却速度控制,而冷却速度又取决于各种因素,如板材速度、喷嘴组距离、冷却剂流速等。因此,要获得新的钢种,需要对所有这些参数进行适当的组合设置。从实验室规模的 ROT 观察到的数据(如上喷嘴距离、下喷嘴距离和冷却剂质量流速)可用于找出冷却速度,这是实现钢所需性能的重要参数。这里使用人工神经网络在观察到的数据和热力学参数之间建立经验关系,这将决定冷却速度并对其进行验证。
F-35B 是联合攻击战斗机的短距起飞和垂直着陆 (STOVL) 变体。这种独特飞机的“悬停”能力是通过推力矢量喷嘴和中央安装的升力风扇的组合实现的,前者引导主发动机排气向下以产生后垂直升力,后者提供平衡的前垂直升力。Moog 设计、认证并制造了这两种应用所需的复杂作动系统。具体来说,Moog 为三轴承旋转喷嘴提供作动系统,该喷嘴将主发动机的排气向下旋转 90 度。此外,Moog 还提供控制升力风扇可变面积喷嘴和进气导叶的作动系统,从而控制通过升力风扇的气流。这些执行系统使用电子控制液压和燃油液压伺服执行器,专为在极端温度和振动环境下运行而设计。
直径 40 英寸的石墨环氧发动机 (GEM 40) 是一种捆绑式助推器系统,旨在为 Delta II 运载火箭提供推力增强。GEM 40 具有 IM7/55A 石墨复合材料发动机外壳、芳纶填充 EPDM 绝缘体和 10 度倾斜固定喷嘴组件。对于 Delta II 九发动机配置,六台发动机在地面点火,三台发动机在空中点火。空中启动(高空点火)GEM 40 发动机配置具有加长的喷嘴出口锥体,膨胀率更高,出口平面安装的喷嘴封闭系统在空中启动发动机点火时弹出,并采用不同的外部绝缘方案。 GEM 40 自 1991 年以来一直在 Delta II 运载火箭上飞行。GEM 40 捆绑式助推器于 1990 年开始发射 Delta II 运载火箭,最后一次飞行于 2018 年 9 月,结束了长达 28 年、1,003 台发动机的成功时代。
问题。 * 故障查找 自诊断故障查找系统。在 LCD 上识别故障并提出解决方案。 * 喷嘴定位 改进的喷嘴安装和移动系统。喷嘴可以非常准确地定位。 * 跳封 滚轮反转的全功能控制。防止“跳封” * 速度设置。(选项)用于临时减速的系统,以协助交叉密封。 * 上辊。(选项)用红外传感器加热,实现精确的温度控制。 * 下辊(选项)用红外传感器加热,实现精确的温度控制。 * 柱选项。(选项)小直径“鞋柱”下辊。 * 胶带送料。(选项)电动胶带送料系统。防止卷轴上的张力/阻塞。 * 点标记装置(选项)点标记引导胶带切割时间/接缝线。
对于军用飞机而言,燃气涡轮发动机制造商和最终用户面临的一个关键问题就是耐久性。尤其是加力燃烧段的条件非常恶劣,发动机喷嘴的设计寿命通常只有涡轮发动机其他硬件的一半。目前的喷嘴基于由密封件和襟翼制成的轴对称可变喷嘴。这些组件必须承受极端温度(通常超过 1000°C)以及与加力燃烧器点火相对应的快速热循环。此外,加力燃烧段通常具有燃烧功能不均匀的特点,这会在某些喷嘴瓣上产生热条纹。因此,这些部件会受到非均匀热流的影响,襟翼和密封件的重叠设计尤其明显,从而在整个宽度上产生高热应力。镍基合金通常用于发散襟翼和密封部件。严酷的热机械环境使镍基部件产生大量开裂,再加上高温 1 导致的蠕变变形。结果是部件拆卸增加,直接影响可操作性、维护和成本。军用发动机对热段部件更长使用寿命和更高推重比的追求为陶瓷材料打开了大门。陶瓷基复合材料 (CMC) 适用于暴露在高温(高达 1000°C)下的加力燃烧段,包括高热梯度。因此,人们继续对在军用燃气涡轮发动机中开发、测试和部署 CMC 感兴趣,一些开发已经取得成功。这是为 F/A-18 E/F 超级大黄蜂 2 战斗机提供动力的 F414 发动机喷嘴引入 SiC/C CMC 的情况,以及为阵风 3 战斗机提供动力的 M88 发动机喷嘴外襟翼引入 C/SiC CMC 的情况。考虑用于燃气轮机部件的 CMC 涵盖了通过化学气相渗透 (CVI)、溶胶凝胶路线、聚合物渗透和热解 (PIP) 和熔融渗透 (MI) 4 制造的各种纤维和基质。所得材料能够承受排气喷嘴的高温和热疲劳。然而,CMC 组件的耐久性与其抗氧化性直接相关,这会影响其热机械潜力并导致部件破裂。已经对几种 CMC 密封件进行了地面测试,并在具有代表性的全地面发动机寿命后测量了机械性能。近几年,斯奈克玛推进固体公司 (SPS) 开发了先进的 SiC/SiC 和 C/SiC 材料,包括多层编织和自密封基质。普惠公司和空军研究实验室正在考虑将这些材料用于 F100-PW-229 发动机喷嘴发散密封件,该密封件为 F16 和 F15 战斗机提供动力。本文介绍了发动机经验和后测试特性的结果。将讨论材料系统对燃气轮机喷嘴应用的适用性。
通过剪切变稀,在临界施加应力下可逆地从固体转变为流体。[2] 屈服应力流体是一类非常有用的材料,可实现众多应用,包括表面涂层、各种食品和消费品、注射药物输送[3–5] 和各种形式的 3D 打印。[6–9] 通过平移浸没在屈服应力流体浴中的喷嘴,同时注入不混溶相,可以生成嵌入的液滴。喷嘴的移动使流体浴屈服并流化,由于注入相与流体材料的表面张力,液滴形成。形成后,由于流体浴的有效屈服应力超过了液滴上的浮力应力,液滴静态悬浮在原位[10–12],并且即使不使用表面活性剂,它们在空间上也是孤立和稳定的。先前的研究已经为屈服应力流体与不混溶注入相的模型配对建立了可用的操作空间以及喷嘴移动速度与液滴直径之间的关系。[1]
F-35B 是联合攻击战斗机的短距起飞和垂直着陆 (STOVL) 变体。这种独特飞机的“悬停”能力是通过推力矢量喷嘴和中央安装的升力风扇的组合实现的,前者引导主发动机排气向下以产生后垂直升力,后者提供平衡的前垂直升力。Moog 设计、认证并制造了这两种应用所需的复杂作动系统。具体来说,Moog 为三轴承旋转喷嘴提供作动系统,该喷嘴将主发动机的排气向下旋转 90 度。此外,Moog 还提供控制升力风扇可变面积喷嘴和进气导叶的作动系统,从而控制通过升力风扇的气流。这些执行系统使用电子控制液压和燃油液压伺服执行器,专为在极端温度和振动环境下运行而设计。
