抽象的陶瓷按需挤出(代码)是一个直接的墨水写作过程,它允许由于油辅助干燥而创建具有大型横截面(≳1cm3)的理论上密集的陶瓷组件(≳1cm3)。In this study, 3 mol % yttria-stabilized zirconia (3YSZ) colloidal pastes were used in the CODE process to produce dense (multi-road infill and ≳ 99% relative density), large continuous volume ( > 1cm 3 ), and high fidelity (nozzle diameters ≲ 1mm) structural ceramic components with nanoparticle feedstocks (~d 50 ≲ 1 µm).这项研究探索了对胶体糊的化学修饰,例如pH和表面活性剂浓度,从而影响糊状稳定性,通过利用稀释溶液中的咖啡环效应来检查修饰。粒径,ZETA电位和扫描电子显微镜来分析沉积形态。最终,讨论了有关研究的缺陷和结果,讨论了糊状配方和代码打印权衡。
• 大刻度盘带模拟指示器,读数方便,减轻工人疲劳感。• 本仪器采用差压式。该方法测量稳定,因为几乎不受相应供给气压变化的影响。• 差压式空气千分尺比流量式空气千分尺测量气压高,因此测量间隙更大,测量头耐用性更高。• 由于每个旋钮都是独立的,因此可以进行内部或外部测量的极性反转和零点调整。• 填充放大倍数系列可以满足您的测量要求。超小直径喷嘴(如 0.3 喷嘴)是环保产品之一,可实现节能。* 关于“差压式”,请参阅数字式空气千分尺“迷你”目录
最近,研究人员使用细长的静压探头在 Longshot 高超声速风洞的自由流中进行测量。他们发现,压力大于假设等熵喷嘴流获得的理论值。现在研究了喷嘴膨胀过程中流动凝结的存在,这可能是非等熵性的来源,以解释自由流静压不匹配。研究了不同的停滞温度,它们会延迟或促进流动成核。经证实,Longshot 风洞的标准操作条件没有凝结。在较低停滞温度下进行的实验成功促进了氮的凝结,静压探头可以检测到。与异质成核理论一致,已经实现了微弱的流动过饱和。证明了静压探头的精确性能及其对高超声速流动表征的实用性。
摘要:融合沉积建模(FDM)是一种生产原型和功能组件的良好制造方法。本研究通过材料和与过程相关的影响变量研究了FDM组件的机械性能。的拉伸试验以其原始丝形式的七种不同材料进行,其中两种是纤维增强的,以分析其与材料相关的影响。涵盖从相关的载荷组件的标准材料到高级材料及其各自的变化,聚乳酸(PLA),30%木纤维增强的PLA,丙烯硝基丁烷苯乙烯苯乙烯苯乙烯苯乙烯苯乙烯苯乙烯(ABS)(ABS)(abs),聚碳酸酯(PC),聚碳酸酯(PC),abled and nyls and nyls and nyls-frend-nyls-Flend ways-Flass-Flend ways ways-Flast-Flend-Flend ways-Flast-Flend ways-Flast-Flend。使用以下过程参数研究了与过程相关的影响变量:层厚度,喷嘴直径,构建方向,喷嘴温度,填充密度和模式以及栅格角度。第一个测试系列表明,由于缺乏与基质的纤维键合,木纤维的添加显着恶化了PLA的机械行为。ABS和PC的聚合物混合物仅显示刚度的改善。尽管纤维纤维 - 雄性雄性粘结部分较差,但通过嵌入尼龙中的玻璃纤维嵌入玻璃纤维,发现了显着的强度和刚度。选择具有最佳属性的材料进行过程参数分析。在检查层厚度对零件强度的影响时,明显相关。零件取向确实改变了测试样品的断裂行为。较小的层厚度导致较高的强度,而刚度似乎没有受到影响。相反,较大的喷嘴直径和下部喷嘴温度仅对刚度产生积极影响,对强度影响很小。尽管向边缘方向导致较高的刚度,但在较低的应力下失败了。较高的填充密度和与负载方向对齐的填充图案导致了最佳的机械结果。栅格角对印刷物体的行为产生了重大影响。与单向栅格角相比,交替的栅格角会导致较低的强度和刚度。但是,由于珠子的旋转,它也引起了显着的拉伸。
ICE-Cube 推进器规模非常小——其燃烧室和喷嘴的长度不到 1 毫米——因此只能使用 MEMS(微机电系统)方法来组装,借鉴微电子领域的方法。
通过在喷嘴和喷嘴之间施加高电压,将喷嘴挤出的聚合物熔体电吸向收集器,从而无需任何溶剂即可形成聚合物纤维。[6] 与 MES 不同,MEW 引入了计算机辅助打印头相对于接收基板的相对运动,从而能够对生成的纤维进行数字控制定位,从而形成边界明确的微结构。与通常生产直径超过 100 微米的纤维的传统挤出数字沉积技术相比,MEW 可轻松产生从数百纳米到数十微米的定位良好的纤维。[2,3,5,7,8] 此外,由于静电吸引,该技术可以精确堆叠纤维,从而形成边界明确的高壁。[1] 凭借所有这些特性,MEW 已被证明是一种制备超细纤维基生物支架的强大技术,在组织工程和再生医学中具有巨大潜力。[8–12]
收到:2024年8月8日修订:2024年9月10日接受:08年10月8日发布:2024年10月30日摘要-3D打印使用计算机辅助设计和分层来创建三维对象。许多研究人员正在探索3D打印的不同材料。其中一种途径是由于其可生物降解性和更好的机械性能,用聚合物材料加强天然纤维。这项研究的主要目标是探索使用融合沉积建模(FDM)的香蕉纤维与聚乳酸(PLA)进行3D打印的使用。本文研究了天然纤维增强对机械特性的影响,此外,还研究了FDM过程变量(例如喷嘴尺寸,填充图案,层厚度和喷嘴温度)对机械性能的影响。为了确定这些过程因子的重要性,使用方差分析(ANOVA),并使用Taguchi L16来设计实验。在这项研究中,为了执行机械拉伸测试和弯曲测试,根据ASTM标准从香蕉纤维/PLA生物复合材料印刷样品。用0.8毫米喷嘴尺寸,立方填充图案,0.3毫米厚度(200°C)打印的项目显示弯曲强度,拉伸强度,拉伸模量和弯曲强度的最大值。在3D制造的复合测试样品中,3%的香蕉纤维组成显示最大模量为985 MPa,最大弯曲强度最大为151 MPa,最大32 MPa抗拉力强度和最大2452 MPA MPA弯曲模量。断裂表面的SEM显微照片显示界面粘结和纤维拉出。
