• Log into the HQR system using your HARP ID credentials and navigate through the steps listed below to download your HSR: - From the left-hand navigation menu, select “Program Reporting” - Then select “Measure details” - Here, you can view your hospital specific reports (HSRs) - Select the release year for your report (for example, select 2024 for the FY 2025 HSR), followed by the program in which you are interested (for example, HRRP)。在“报告”下,您可以看到可下载的文件列表(例如,HRRP HSR)。- 要下载文件,选择“导出”,将通过浏览器下载该文件。下载后,打开zip文件以查看您的网站的信息。
Vizient 公共政策和政府关系办公室 医疗保险和医疗补助计划以及儿童健康保险计划;急症护理医院和长期护理医院预付费系统的住院预付费系统以及政策变化和 2025 财年费率;质量计划要求;以及其他政策变化 2024 年 8 月 7 日 与建立和维持基本药物获取的单独 IPPS 支付相关的关键要点 8 月 1 日,医疗保险和医疗补助服务中心 (CMS) 发布了最终规则,以更新住院预付费系统 (IPPS) 下的支付率并推进其他政策,包括减轻药品短缺影响的政策。本摘要重点介绍与药品短缺相关的最终政策(第 1057-1097 页)。一般而言,CMS 最终确定了对某些建立并维持 6 个月基本药物缓冲库存的小型独立医院(100 张或更少床位)的额外支付机会。 1 CMS 重申,符合条件的医院可自愿建立一个或多个缓冲库存。自 2024 年 10 月 1 日或之后开始的成本报告期,IPPS 将提供此单独付款(每两周一次或按成本报告结算一次)。此外,CMS 指出,它正在通过《文书工作减少法案》(PRA)流程就此拟议付款的补充成本报告表单独征求意见。截至撰写本摘要时,补充成本报告表和评论机会尚未发布。最后,在最终规则中,CMS 指出,如果需要进行其他更改,它将根据需要在未来的规则制定中对政策提出适当的修改。基本药物清单为了确定哪些药物是必需的,CMS 最终确定使用美国卫生与公众服务部 (HHS) 应急准备和响应助理部长办公室 (ASPR) 和先进再生制造研究所 (ARMI) 的 86 种基本药物清单(“ARMI 清单”)。
•我们将尊重,认识到实现系统变更可能很困难•我们将使用改进方法和数据指导和构建我们的方法•我们将专注于改进,成果和经验•正确实施共同制作阶梯
64 Brno,捷克共和国。 doi:https://doi.org/10.47011/17.2.9接收到:15/02/2023;接受:30/07/2023摘要:在过去的几十年中,环氧树脂已显示出几种优势作为现场发射电子源的涂料材料;这包括降低施加电压的操作以及启动电子排放过程所需的阈值电压。 这项研究说明了使用树脂2301环氧树脂作为现场发射发射器的涂料材料的结果。 结果包括紫外线光谱分析,以获得固化涂层层的局部工作函数和电离能的平均值。 在用固化的环氧树脂涂层之前和之后,使用扫描电子显微镜检查样品。 此外,以全面比较的形式介绍了未涂层的钼和复合钼 - 环氧样品的田间发射显微镜特征。 研究显示了通过涂料材料的应用增强现场排放特性的有希望的结果。 值得注意的是,阈值电压显着降低。 发现来自涂层样品的发射电流值至少是未涂层样品的发射电流值。64 Brno,捷克共和国。doi:https://doi.org/10.47011/17.2.9接收到:15/02/2023;接受:30/07/2023摘要:在过去的几十年中,环氧树脂已显示出几种优势作为现场发射电子源的涂料材料;这包括降低施加电压的操作以及启动电子排放过程所需的阈值电压。这项研究说明了使用树脂2301环氧树脂作为现场发射发射器的涂料材料的结果。结果包括紫外线光谱分析,以获得固化涂层层的局部工作函数和电离能的平均值。在用固化的环氧树脂涂层之前和之后,使用扫描电子显微镜检查样品。此外,以全面比较的形式介绍了未涂层的钼和复合钼 - 环氧样品的田间发射显微镜特征。研究显示了通过涂料材料的应用增强现场排放特性的有希望的结果。值得注意的是,阈值电压显着降低。发现来自涂层样品的发射电流值至少是未涂层样品的发射电流值。
图2。验证基于高斯过程的ML模型。(a)在得出的ΔKE和高斯过程之间的(a)在得出ΔKE和高斯过程的ΔKE和高斯过程之间,在得出的Δ和高斯过程之间预测了Δ(c)Δ(c)Δ(c)导出的Δ(c)范围差异的MD模拟V r和高斯过程之间的差异图预测了v r(d)概率密度函数eprots eratigre trots trots efictiationdutifeΔkekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekeke的概率的函数(e)的概率(e)的概率(e)差异的百分比(e)差异。 (f)在V r的预测中,百分比误差的概率密度函数图。 HEA的动能耗散(ΔKE)和穿透深度(δ),残留速度(V r)为(a)在得出ΔKE和高斯过程的ΔKE和高斯过程之间,在得出的Δ和高斯过程之间预测了Δ(c)Δ(c)Δ(c)导出的Δ(c)范围差异的MD模拟V r和高斯过程之间的差异图预测了v r(d)概率密度函数eprots eratigre trots trots efictiationdutifeΔkekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekeke的概率的函数(e)的概率(e)的概率(e)差异的百分比(e)差异。 (f)在V r的预测中,百分比误差的概率密度函数图。HEA的动能耗散(ΔKE)和穿透深度(δ),残留速度(V r)为
文章信息ABS范围降低电池功能是广泛采用电动汽车(EV)的主要障碍。因此,需要解决方案来优化锂离子电池的安全性,性能和周期寿命。为了解决这个问题,我们提出了第一个AI驱动的电池管理系统(BMS),能够对电动电池电池中的最先进,最先进的健康状况和可能的故障动态进行无模型的预测。我们利用工业X射线计算机断层扫描来检查内部电极,分离器质量和电荷以及电化学阻抗光谱谱图来量化细胞最新状态。我们的无模型方法可以解决实验和工业EV的数据;我们证明了突破性的预测准确性,既不需要校准,也不需要任何商业工具援助。该方法在定性上对电池性能的看法提供了一种新颖的视角,这将使最终的理解和优化设计。我们的方法直接支持可持续性和电动汽车的低成本驾驶。车辆电气化和杂交的提高需要加速锂离子电池性能和安全性的进步,这主要依赖于复杂的嵌入式电池管理系统。具体来说,终身对单个细胞的最先进(SOC)和最先进的(SOH)的准确跟踪具有基本重要性。可靠性降低不仅会影响硬件在循环研究中的承诺,而且会影响电动汽车行业扩散的直接结果。在这些功能中表现不佳的影响将导致电动汽车滞留在高速公路侧,大规模电力缓冲区的停机时间,减少总体电动汽车电池组的使用以及早期频繁的昂贵降级和更换。仅凭电池特性就会出现许多问题,并且共识是问题只会变得更加严重。为了强烈降低这种风险并适应电气化的演变,需要通过追求针对电池监控,建模和管理的高级机器学习算法来延长电池使用寿命。关键字:优化电动汽车性能,电动汽车(EV),电池管理系统(BMS),AI(人工智能),性能优化,能源效率,机器学习,电池电量(SOC),电池健康状况(SOH)
2,λ ∈ [ − π,π ] 。然而,这两种表示360°图像中扫描路径的方法都存在不连续性的问题,比如纬度相同但经度不同的两个点λ = − 180 ◦和λ = 180 ◦,其实代表的是同一个位置,但在以上两个坐标系中,它们代表的是两个不同的位置,而且相距甚远。为了解决上述问题,我们在三维笛卡尔坐标系中表示注视点,其中每个位置都以p =(x,y,z)的形式给出。采用该三维坐标系,可以有效解决二维等距矩形投影中使用的坐标系的不连续性问题。此外,三个坐标系中的表示可以使用以下公式灵活地转换。
摘要。在探索视觉场景时,人类的扫描路径是由他们的基本注意力过程驱动的。了解视觉扫描对各种应用至关重要。传统的扫描模型预测目光的何处和何时在不提供解释的情况下变化,在理解固定背后的基本原理方面存在差距。为了弥合这一差距,我们介绍了Gazexplain,这是一项关于视觉扫描预测和解释的新研究。这涉及注释自然语言解释,以介绍跨眼睛追踪数据集的固定,并提出具有关注语言解码器的通用模型,该模型共同预测扫描路径并生成解释。它集成了一种独特的语义对准机制,以增强固定和解释之间的一致性,以及跨数据库共同训练的通用方法。这些新颖性为可解释的人类视觉扫描预测提供了一种全面且适应性的解决方案。对各种眼睛追踪数据集进行的广泛实验证明了GAZ-在扫描Path的预测和解释中解释的有效性,从而为人类的视觉关注和认知过程提供了宝贵的见解。
使用糖尿病技术来管理T1D正在增加,但是非专业的卫生专业人员可能缺乏有关特定胰岛素泵的细节和功能的详细知识。许多当前的胰岛素泵与连续的葡萄糖监测系统(CGM)相互作用,形成混合闭环系统。混合闭环系统使用CGMS反馈来预测葡萄糖趋势并通过减少,悬浮或增加胰岛素输送来调整胰岛素的递送。在没有CGMS反馈的情况下,基础胰岛素以预先设定的速率传递,用户可以通过泵和/或电话应用程序手动提供用于碳水化合物(CHO)和葡萄糖校正的推注胰岛素。在没有链接的CGM的情况下,基底胰岛素以预先设定的速率传递,用户手动通过泵向碳水化合物和葡萄糖校正提供了推注胰岛素。
摘要:医院建筑提供医疗服务,费用大量能源消耗和碳排放,进一步加剧了环境负荷。由于对中国医院的生命周期碳排放的研究有限,因此进行了详细的碳计数和比较研究。首先,使用BIM和LCA来量化生命周期每个阶段的住院建筑物的碳排放。其次,根据20份公共建筑物比较了按阶段进行碳排放的差异。结果表明,住院建筑的全寿命碳排放量为10,459.94 kgco 2 /m 2。运营碳排放的比例为94.68%,HVAC(52.57%),设备(27.85%)和照明(10.11%)是主要来源。体现的碳排放量为4.54%,HRB400钢和C30混凝土是碳排放的主要来源。医院在运营碳强度方面仅次于商场,是学校和办公楼的1.71和1.41倍,住院建筑分别是医疗综合体和门诊建筑的3和1.7倍。医院建筑的未来可持续发展应在能源效率和降低碳质量方面促进有效的建筑绩效和良好的环境质量。