摘要无线电力传输(WPT)技术的最新进展为消费者和行业提供了更方便,高效和智能的电动汽车(EV)和智能设备(SDS)(例如智能手机,无人机,机器人和物联网)的收费。WPT已被采用,以免手工频繁地进出充电。仅凭重型电池就无法解决所有移动物体的饥饿能量问题,最终应该为此充电。在本教程中,首先简要介绍了包括电感功率传递(IPT)在内的WPT的基本原理,并解释了主要的WPT理论,例如耦合线圈模型,Gyrator电路模型,磁性镜像模型和一般统一的动态词曲模型。电动汽车的WPT进展得到了广泛的解释,它们分类为固定的电动汽车(SCEV)和道路驱动电动汽车(RPEV)。SCEV由于便利性和安全性而变得越来越吸引人。此外,由于电动汽车市场份额和可再生能源的市场份额迅速增加,电动汽车和网格的互操作性变得非常重要。电动汽车不再是简单的能源消费者,而是电网的能源提供者。WPT是一种有前途的解决方案,可以在停放时自动将电动汽车与网格连接。这是SCEV作为可互操作系统的灵活手段的潜在贡献。详细解决了线圈设计,大容忍度充电,补偿电路和异物检测(FOD)问题。也总结了全球技术发展的最新进展。rpevs没有严重的电池问题,例如大,重,昂贵且昂贵的电池组以及较长的充电时间,因为它们在移动时直接从道路上获得电源。通过创新的半导体开关,更好的线圈设计,巷道构造技术和更高的操作频率的优点,已提高了WPTSS的功率转移能力,效率,电磁场(EMF),气隙,大小,重量和成本。引入了WPT的最新进展。SD的WPT中的进步被解释了,根据操作环境,它们彼此之间的不同。智能手机是WPT中最成功的应用程序,现在正在不断发展,以获得太空中的更多收费自由。由于分布式和物联网的多种性质,WPT的广泛领域非常具有挑战性。各种动力水平和耐力时间的各种无人机和机器人需要具有足够快速的充电速度,并具有位置自由度。最近的技术发展将解释。解决了WPT问题的未来,其中包括可互操作的无线电动汽车,更长的距离IPT,3D无线充电器和合成的磁场聚焦(SMF)。
这种合作标志着卡塔尔数字化转型之旅的关键步骤,利用Seeloz的强化学习自动化(RLA)平台和Microsoft的尖端云和AI基础架构创造了自主优化引擎来创建能量价值链,资产管理和生产工作流程。Energizeai旨在通过在每个决策层部署AI驱动的智能来消除效率低下,降低运营成本和防止未来的卡塔尔能源生态系统。
结构磁共振成像 (sMRI),尤其是纵向 sMRI,通常用于在阿尔茨海默病 (AD) 临床诊断期间监测和捕捉病情进展。然而,目前的方法忽视了 AD 的渐进性,大多依赖单一图像来识别 AD。在本文中,我们考虑利用受试者的纵向 MRI 进行 AD 分类的问题。为了解决学习纵向 3D MRI 时缺失数据、数据需求和随时间发生的细微变化等挑战,我们提出了一个新模型 LongFormer,它是一种混合 3D CNN 和变压器设计,可从图像和纵向流对中学习。我们的模型可以充分利用数据集中的所有图像,并有效地融合时空特征进行分类。我们在三个数据集(即 ADNI、OASIS 和 AIBL)上评估我们的模型,并将其与八种基线算法进行比较。我们提出的 LongFormer 在对来自所有三个公共数据集的 AD 和 NC 对象进行分类方面取得了最先进的性能。我们的源代码可从 https://github.com/Qybc/LongFormer 在线获取。
威立雅的目标是成为生态转型的标杆企业。集团在五大洲拥有近 218,000 名员工,设计和部署实用的水、废物和能源管理解决方案,帮助彻底改变世界。通过三项互补的活动,威立雅致力于开发资源获取途径、保护现有资源并对其进行更新。2023 年,威立雅集团为 1.13 亿人提供饮用水,为 1.03 亿人提供污水处理服务,生产了 42 太瓦时的能源,回收了 6300 万公吨废物。威立雅环境集团 (巴黎泛欧交易所代码:VIE) 在 2023 年的综合销售额为 453 亿欧元。www.veolia.com
本出版物中的所有信息,思想,观点,意见,估计,建议,建议,建议(以下简称“内容”)不应以任何方式理解为专业建议,也不应将其解释为发展监测和评估办公室(DMEO)(DMEO)的政策,目标,意见或建议。建议读者根据本出版物的内容在采取任何行动或决定之前,在采取任何行动或决定之前寻求专业建议。本出版物中的内容是从DMEO认为可靠的来源获得或得出的,但DMEO并不代表此信息是准确或完整的。dmeo不承担任何责任,并对使用本出版物的任何人(自然或法律)造成的任何损失,损害,损害赔偿责任不承担任何责任。
Rubia Shoukat * 摘要 人工智能 (AI) 正在改变全球教育,通过个性化学习、自动评分和智能内容增强学习体验和成果。本文对中国和印度教育系统中实施人工智能技术的程度进行了比较分析,重点介绍了关键举措、成功案例和挑战。基于这些发现,建议巴基斯坦采取类似战略来改善其教育格局。研究发现,人工智能已被各种教育机构以多种形式广泛采用和利用在教育领域。最初,人工智能通过计算机和相关技术体现出来,逐渐演变为基于网络和在线的智能教育系统。最终,嵌入式计算机系统和其他技术的集成导致使用人形机器人和基于网络的聊天机器人来独立或与人类教师一起履行教师职责。此外,这些系统利用机器学习和适应性来定制和个性化课程和内容以满足学生的需求,从而提高了学生的参与度和保留率,从而提高了整体学习体验和教育质量。关键词:教育技术、人工智能、AI、教育、机器学习、人机界面 简介 社会变革的概念是多方面的,有多种定义。该术语用于描述人际关系、互动
课程简介:学生将通过实践和模拟活动探索电路中的能量传递。绩效期望:HS-PS3-1:创建一个计算模型,当已知系统中其他组件的能量变化和流入和流出系统的能量时,计算系统中一个组件的能量变化。MS-PS3-2:开发一个模型来描述当远距离相互作用的物体的排列发生变化时,系统中会存储不同数量的潜在能量。具体学习成果:学生将能够 - 通过探索微电子在日常设备中的作用来吸引兴趣。 - 通过实践活动研究微电子元件如何管理和存储能量。 - 解释微电子系统中的能量关系并利用计算模型。 - 将他们对微电子能量管理的理解应用于实际问题。 - 评估他们对微电子中的能量传递、潜在能和计算建模的理解。叙述/背景信息 对于微电子 5E 课程计划,学生需要掌握基本电路概念的基础知识,包括了解电阻器、电容器和电源等组件。他们应该熟悉能量传递的原理,包括势能和动能的作用,以及欧姆定律与电压、电流和电阻的关系。了解能量如何存储(在电容器中)和耗散(在电阻器中)很重要,以及微电子如何在智能手机或计算机等日常设备中发挥作用。熟悉电子表格或电路仿真软件等基本计算工具也将有助于学生在课堂上模拟电路中的能量关系。 科学与工程实践:开发和使用模型 开发一个模型来描述不可观察的机制。(MS-PS3-2) 使用数学和计算思维 创建现象、设计设备、过程或系统的计算模型或模拟。(HS-PS3-1)
摘要。近年来,自然语言处理领域(NLP)发生了一场革命,文字一代在这一转变中起着关键作用。这种转变不仅限于技术领域,而且还无缝渗透了创意领域,一个很好的例子是歌曲歌词的一代。真正有效的生成模型,例如生成训练的预训练变压器(GPT)-2,需要进行微调作为关键步骤。本文利用了广泛参考的Kaggle数据集的鲁棒性,标题为“歌曲歌词”,仔细探讨了调节三个关键参数的影响:学习率,批处理大小和序列长度。数据集提出了一个引人入胜的叙述,该叙述将学习率视为最有影响力的决定因素,直接影响了产生的歌词的质量和连贯性。在增加批处理大小和扩展序列长度有望增强模型性能的同时,很明显,还有一个饱和点,超出该点的效果受到限制。通过此探索,本文旨在揭开模型校准的复杂世界,并强调战略参数选择在追求抒情卓越方面的重要性。