美国国家理工学院Jamshedpur(NIT Jamshedpur)是一家国家重要的研究所,位于印度贾坎德邦的Jamshedpur。于1960年成立为区域技术研究所,于2002年12月27日升级到美国国家理工学院(NIT),并以视为大学的地位升级。这是印度的31个尼特人之一,因此直接在人力资源开发部(MHRD)的控制之下。这是印度政府第二五年计划(1956 - 61年)建立的八个nit链中的第三个。该研究所有十二个部门,包括工程,科学和人文科学。该研究所在各种流中提供4年技术学士学位。该研究所还提供了各种流的硕士学位和博士学位。该研究所与寻求
植物转化仍然是功能基因组学和作物遗传改良最受追捧的技术,尤其是用于引入特定的新特性以及修改或重组已有特性。自 25 年前首次推出以来,转基因作物与许多其他农业技术一样,全球产量稳步增长。自首次使用农杆菌将 DNA 转移到植物细胞以来,不同的转化方法推动了分子育种方法的快速发展,将具有新特性的作物品种推向市场,而这些特性是传统育种方法难以实现或不可能实现的。如今,转化生产转基因作物是农业领域最快和最广泛采用的技术。植物基因组测序数量迅速增加,功能基因组学数据中的信息有助于了解基因功能,再加上新型基因克隆和组织培养方法,进一步加速了作物改良和特性发展。这些进步是值得欢迎的,也是使作物更能适应气候变化并确保产量以养活不断增长的人口所必需的。尽管取得了成功,但转化仍然是一个瓶颈,因为许多植物物种和作物基因型难以适应既定的组织培养和再生条件,或者转化能力较差。使用形态发生转录调控因子可以进行改进,但它们的广泛适用性仍有待检验。基因组编辑技术的进步和直接、非组织培养的转化方法为增强其他难转化作物品种的开发提供了替代方法。在这里,我们回顾了植物转化和再生的最新进展,并讨论了农业中新育种技术的机会。
临床内分泌学领域以及医疗保健,正面临着新技术的变革性变化,尤其是人工智能(AI)。AI有望大大改善我们筛选,诊断,治疗,监测和教练患者的方式(1,2)。AI工具不仅会使内分泌决策的流程更快,更可靠,因此AI的使用为针对个人患者特征量身定制的个性化治疗计划开辟了道路(3,4)。AI是涵盖机器学习(ML)的计算机科学领域。ml使用旨在做出预测或分类的数学算法。这些模型通常在已知的,标记的数据集上进行训练,并迭代地增强,以获得对看不见的数据进行准确预测的能力(5)。深度学习(DL)是ML的一个子集,使用模仿人类中枢神经系统的复杂模型。dl需要使用人工神经网络(ANN)。ANN由互连层组成,这些图层通过最小化误差(6)来传递信息并优化预测。一旦受过培训,ANN可以处理庞大而复杂的数据集,以执行预测,分类,甚至更高级的应用程序等任务,例如大型语言模型(LLMS),计算机视觉和多媒体生成,从文本输入(7-9)中生成。我们预计AI会造成临床内分泌学的前所未有的破坏。尽管如此,大多数临床医生一方面缺乏对临床AI潜力的正确理解,另一方面,缺点和警告。对AI基础的平衡理解必须最大化其利益。因此,医疗保健提供者必须熟悉这项新技术,但也必须了解其局限性。表1概述了基于AI的工具与临床内分泌学中常规方法之间的差异。本文的目的是概述AI在临床内分泌学和糖尿病领域中的潜在和未来方向。
使用深层神经网络越来越多地研究了大脑连接与非成像表型之间的关系。但是,在卷积网络设计中通常会忽略大脑白奇网络的局部和全球性能。我们介绍了Tractgraphformer,这是一种混合图CNN-Transformer的深度学习框架,该框架是针对扩散MRI拖拉术的。该模型利用白质结构的局部解剖特征和全局特征依赖性。图形CNN模块捕获了白质的几何形状和灰质连接到从解剖上相似的白色物质连接中汇总局部特征,而变压器模块则使用自我注意来增强全球信息学习。此外,TractGraphFormer还包括一个用于解释预测白质连接的注意模块。在性别预测测试中,TractGraphFormer在大的儿童数据集(n = 9345)和年轻人(n = 1065)中表现出强烈的表现。总的来说,我们的方法表明,WM中的广泛连接可以预测一个个体的性别,并且在两个数据集中确定了一致的预测解剖区。提出的方法突出了整合局部解剖信息和全球特征依赖性的潜力,以通过扩散MRI拖拉术在机器学习中提高预测性能。
ALN系统用IDP替换了有关学校行动/学校行动以及学习和技能计划(LSP)的学习者的现有支持计划(包括SEN的陈述,个人教育计划(IEPS))使用IDP。在确定25岁以下的儿童或年轻人的情况下,他们通常有权获得IDP,无论他们在哪里受过教育。上面的问题3描述了ALN系统何时以及如何为特定的儿童群体上线。
农业现在正处于发展的新时代的开始。农业生态学方法正在获得吸引力,旨在保护或再生土壤健康,最大程度地减少农药和/或肥料的污染风险,最大程度地提高耕作作物的栖息地多样性,并恢复退化的生态系统。除了制定行动计划以达到零碳目标外,公司还将很快不得不扩大其环境影响报告,以考虑与自然有关的财务风险和机会。农业依靠一大批生态系统服务,例如授粉,生物质回收中的养分释放,甚至是害虫控制,以保持可行和有利可图。但是,气候变化和生物多样性损失的综合威胁使这种业务模式处于危险之中。现在是时候识别,评估和量化生态系统功能对我们的农业活动的贡献,确定驱动因素及其面临的潜在风险,并开发新的发展模式。改变气候威胁棕榈油部门
关于DTI,数据传输计划(DTI)是与科技行业和其他利益相关者合作的政策专家和技术人员的非营利组织,以增强数据可移植性。我们的使命是通过简单,安全的数据传输来增强人们的能力,从而扩大数字经济中的选择和机会。Vision Data Portability赋予个人能力,增强市场竞争并推动创新。当人们能够轻松,安全地移动其个人数据时,他们会从新的机会和下游创新中受益,而这些创新将是不可能的。这种重新构成市场,从而使用户,新进入者和更广泛的在线生态系统受益。数据可移植性的许多令人惊讶的好处在于隐私,但在当今最关键的技术政策挑战中起着不可或缺的作用:
摘要尽管对行业4.0提供供应链弹性(SCR)的机会感兴趣,但对此类贡献的基本机制知之甚少。该研究开发了一个路线图,该路线图解释了供应链如何利用行业4.0 SCR功能。该研究进行了以符合条件为中心的文献综述,并确定了16个功能,该功能通过该功能4.0增强了SCR。结果表明,所确定的行业4.0 SCR功能高度相互关联,供应链成员应将其数字化策略与行业4.0提供这些功能的顺序保持一致。行业4.0对SCR的贡献首先涉及提供以数据为中心的功能,例如供应链自动化,信息和通信质量,过程监视和可见性。行业4.0进一步允许供应链合作伙伴更好地协作,以改善供应链图,复杂性管理和创新功能。通过这些功能,通过提高供应链操作的透明度,灵活性和敏捷性,行业4.0提供了更依赖但因此的弹性功能,例如供应链响应能力,自适应能力和连续性管理。路线图进一步解释了每对行业4.0 SCR功能如何相互相互作用,同时促进供应链的整体弹性。该研究讨论了可能的含义,并概述了未来研究的重要途径。
- 马尼拉酒店自豪地拥有著名的“ Grub Badge的监护人”,这是由尊敬的废物和资源行动计划(WARAP)提出的杰出荣誉,这是一家总部位于英国的慈善机构,致力于解决全球食品废物。酒店对此原因的承诺是由其确切的食品废物废料管理系统所阐明的。严格的测量结果为变质模式提供了宝贵的见解,从而使未来菜单的精确策划旨在最大程度地减少废物。每个部分都经过周到的审查,以与实际的消费保持一致,强调这种做法超出了仅仅效率。它表示对支持可持续性和负责任的用餐的深刻承诺。
在这项研究中,我们提出了使用多平面和多层跨前(M3T)网络的三维医学图像分类器,以在3D MRI图像中对阿尔茨海默氏病(AD)进行分类。提出的网络协同委托3D CNN,2D CNN和变压器用于准确的AD分类。3D CNN用于执行本机3D表示学习,而2D CNN用于利用大型2D数据库和2D代表学习的预训练权重。使用具有感应性偏置的CNN网络有效地提取局部大脑中与AD相关的异常的信息信息。跨前网络还用于获得CNN后多平面(轴向,冠状和矢状)和多切片图像之间的注意力关系。也可以使用不感应偏置的变压器学习分布在大脑中较大区域的差异。在此期间,我们使用了来自阿尔茨海默氏病神经影像学计划(ADNI)的训练数据集,该计划总共包含4,786 3D T1加权MRI图像。对于有效数据,我们使用了来自三个不同机构的数据集:澳大利亚成像,生物标志物和生活方式旗舰研究(AIBL)(AIBL),开放访问Imaging研究(OASIS)的开放访问系列(OASIS)以及来自培训数据集中的一些ADNI数据。我们提出的M3T基于曲线(AUC)下的区域(AUC)和AD分类的分类精度,与常规的3D分类网络相结合。这项研究表示,所构成的网络M3T在多机构验证数据库中实现了最高的性能,并证明了该方法有效地将CNN和Transformer用于3D医学图像的可行性。