1。Generative AI Is Fuelling Industry Innovation ................................65 5
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
摘要 本研究的目的是评估细菌能力的诱导以便随后进行转化。细菌转化是重组DNA技术中的关键过程。在自然界中,细菌在极其特殊的情况下以短暂的方式从环境中捕获游离DNA。诱导这种转移的体外方法首先需要使细菌具有随后进行转化的能力。因此,这项工作对两个步骤都进行了体外测试。所有协议均在 UTFPR 蓬塔格罗萨校区的生物工程实验室进行。使用大肠杆菌DH5-alpha菌株进行能力诱导,并使用质粒pUC19进行转化。所得结果表明转化细胞成功生长,可以在选择性培养基中选择出对质粒所具有的抗生素具有抗性的细胞。这些技术对分子生物学和基因工程具有重要意义,可以对细菌遗传物质进行控制操作,以用于各种生物技术应用,例如生产异源蛋白质,从而在扩展遗传知识和开发新生物技术方面发挥着重要作用。关键词:分子生物学;生物技术;基因转化。
植物转化仍然是功能基因组学和作物遗传改良最受追捧的技术,尤其是用于引入特定的新特性以及修改或重组已有特性。自 25 年前首次推出以来,转基因作物与许多其他农业技术一样,全球产量稳步增长。自首次使用农杆菌将 DNA 转移到植物细胞以来,不同的转化方法推动了分子育种方法的快速发展,将具有新特性的作物品种推向市场,而这些特性是传统育种方法难以实现或不可能实现的。如今,转化生产转基因作物是农业领域最快和最广泛采用的技术。植物基因组测序数量迅速增加,功能基因组学数据中的信息有助于了解基因功能,再加上新型基因克隆和组织培养方法,进一步加速了作物改良和特性发展。这些进步是值得欢迎的,也是使作物更能适应气候变化并确保产量以养活不断增长的人口所必需的。尽管取得了成功,但转化仍然是一个瓶颈,因为许多植物物种和作物基因型难以适应既定的组织培养和再生条件,或者转化能力较差。使用形态发生转录调控因子可以进行改进,但它们的广泛适用性仍有待检验。基因组编辑技术的进步和直接、非组织培养的转化方法为增强其他难转化作物品种的开发提供了替代方法。在这里,我们回顾了植物转化和再生的最新进展,并讨论了农业中新育种技术的机会。
增材制造工艺在工业领域越来越重要。特别是直接金属沉积 (DMD) 是一种很有前途的制造技术,因为它可以实现广泛的应用,例如从头开始制造零件、在传统加工的原始零件上添加材料,甚至高效修复高价值零件 [1]。除了许多优点外,该工艺的可控性仍然很困难,导致内部缺陷、几何偏差或微观结构不均匀。相变、粉末-气体动力学和参数不确定性等多种物理现象会影响工艺行为并使工艺处理复杂化。因此,需要进行大量的实验活动来确定具有可接受几何和材料性能的工艺参数
最近,引入了一种新颖的实空间重正化群 (RG) 算法。通过最大化信息论量,即实空间互信息,该算法可确定相关的低能自由度。受此启发,我们研究了平移不变系统和无序系统的粗粒化程序的信息论性质。我们证明,完美的实空间互信息粗粒化不会增加重正化汉密尔顿量中的相互作用范围,并且对于无序系统,它会抑制重正化无序分布中相关性的产生,从这个意义上讲是最优的。我们通过对干净随机的伊辛链进行任意粗粒化,通过经验验证了这些复杂性度量作为 RG 保留信息的函数的衰减。结果建立了 RG 作为压缩方案的性质与物理对象(即汉密尔顿量和无序分布)性质之间的直接且可量化的联系。我们还研究了约束对通用 RG 程序中粗粒度自由度的数量和类型的影响。
今年发布的 NAEP 分数显示,COVID 对学生学习产生了巨大影响:阅读和数学成绩的下降幅度是实施测试 30 年来最大的。即使在疫情之前,NAEP 分数也落后了。为了让美国的教育系统重回正轨,我们邀请了来自不同团体的 40 位专家——从教育技术公司到慈善组织再到教师——来讨论可能的解决方案。该小组强调了教育的多学科和融合性质,教育领域涉及心理学、认知科学、社会学和经济学以及正在学习的特定领域(数学、生物学、化学等)。教育传统上是孤立的,往往抵制从技术到职业和工作性质变化等关键社会创新。这使得教育成为融合加速器的绝佳潜在轨道,它“建立在基础研究和发现的基础上,以加速解决方案对社会产生影响。”在构思了数据科学教育、中学数学和评估等关键领域的可交付成果后,该小组讨论了这些领域的交叉趋势。他们发现,支持教育融合至关重要,这将有助于让当今的学生成为明智的决策者、积极解决问题的人和自我导向的终身学习者。本报告提出了专家认为对改善教育机会至关重要的关键主题和必要的伙伴关系。然后,它研究了产生能够改变美国教育格局的可交付成果所需的关键学科和融合。可交付成果的主要未来方向、其智力价值和更广泛的社会影响:● 中学数学可交付成果侧重于提高学生的积极性、数学概念和技能的相关性、支持协作和基于项目的学习、优化和扩展反馈机制以及开发 AI 来响应学生的输入。这些创新将有助于揭示更多关于成就和机会差距以及其他在 STEM 领域对学生群体产生不同影响的机制。 ● 数据科学教育成果侧重于让学生掌握处理数据的程序技能,并支持教师及时对数据科学相关的评估提供反馈。这些成果的智力价值包括了解如何将数据科学教育融入主流课程——或将其作为一门独立的学科进行开发和教授(Engel,2017)——鉴于其跨学科性质。● 评估成果侧重于开发新的、越来越不引人注目的学生评估方式,包括游戏化等元素以及评估更广泛的技能(如自我调节和协作学习)。这些成果的智力价值包括更深入地理解学习过程,通过更有效、更少破坏性和更全面的评估产生更广泛的影响。
▪向其学术顾问提交请愿书,要求对指定课程进行课程审查。▪请愿书必须包括课程课程,包括学习成果,活动和评估。o计划主任可以要求对已提交材料的教师进行审查,以建议批准或拒绝请求。o计划要求:学生在护理中至少需要30个学分来满足学位要求。o学生将需要满足所有亚利桑那州立大学的毕业要求,包括一般研究,45小时的上层和30小时居留。●过程