摘要 — 为了将无人机 (UAV) 融入未来的大规模部署,一种新的无线通信模式,即蜂窝连接无人机,最近引起了人们的关注。然而,以视距为主的空对地信道以及蜂窝地面基站 (GBS) 的天线方向图给蜂窝连接的无人机通信带来了严重的干扰问题。特别是,下倾天线的复杂天线方向图和地面反射 (GR) 会为天空中的无人机造成覆盖漏洞和不均匀的覆盖,从而导致底层蜂窝网络连接不可靠。为了克服这些挑战,在本文中,我们提出了一种新的蜂窝架构,该架构在现有的地面用户设备 (GUE) 下倾天线之上采用一组额外的朝向天空的同信道天线来支持无人机。为了对下倾天线产生的 GR 进行建模,我们提出了一种路径损耗模型,该模型同时考虑了天线辐射方向图和配置。接下来,我们制定了一个优化问题,通过调整上倾天线的上倾 (UT) 角度来最大化无人机的最小信号干扰比 (SIR)。由于这是一个 NP 难题,我们提出了一种基于遗传算法 (GA) 的启发式方法来优化这些天线的 UT 角度。在获得最佳 UT 角度后,我们集成了 3GPP Release-10 指定的增强小区间干扰
摘要。环境监测技术的进步使相关社区和公民能够收集数据,以更好地了解当地环境和潜在暴露情况。这些移动、低成本的工具可以提高收集时间和空间分辨率的数据,提供具有前所未有的详细程度的大规模数据。这种类型的数据有可能使人们能够就其暴露情况做出个人决定,并支持制定减少污染和改善健康结果的当地战略。然而,这些低成本仪器的校准一直是一个挑战。通常,传感器组是通过现场校准来校准的。这涉及将传感器组与高质量参考仪器放在一起一段时间,然后应用机器学习或其他模型拟合技术(如多元线性回归)来开发用于将原始传感器信号转换为污染物浓度的校准模型。尽管这种方法有助于校正环境条件(例如温度)的影响以及与非目标污染物的交叉敏感性,但越来越多的证据表明,由于污染物水平与环境条件(包括昼夜循环)之间存在偶然相关性,校准模型可能会过度拟合给定位置或一组环境条件。 因此,在现场训练的传感器包可能会提供
Allen Frontiers Group 和 Paul G. Allen 家庭基金会。Paul G. Allen Frontiers Group 是 Allen 研究所的一个分支,致力于探索生物科学领域,以发现和培育能够改变世界的想法。
融合加速器正在扩大其即将到来的 2022 年队列。该计划不再资助两个融合研究轨道主题,而是资助四个融合研究轨道:轨道 G:通过 5G 基础设施安全运行;轨道 H:为残疾人提供更多机会;轨道 I:应对全球挑战的可持续材料;轨道 J:食品和营养安全。融合加速器与美国国防部负责研究和工程的国防部副部长办公室 OUSD(RE) 合作,预计将于 2022 年秋季颁发轨道 G 奖项。轨道 H、I 和 J 正处于最后规划阶段,将于 2023 年 1 月公布。此外,融合加速器很高兴能与澳大利亚政府负责科学研究的机构——澳大利亚联邦科学与工业研究组织 (CSIRO) 就轨道 I 展开合作。
A类与B类NSF/ANSI 55将UV系统分为两个不同的类。A类设备旨在灭活和/或去除微生物,包括细菌,病毒,隐孢子虫卵囊和giardia囊肿,从污染的水中。A类紫外线系统不打算用于处理具有明显污染或有意来源的水,例如原污水,也不打算将废水转化为饮用水。它们旨在安装在视觉清澈的水上(不彩色,多云或浑浊)。B类系统是为了对被消毒的公共饮用水或其他具有管辖权的州或地方卫生机构对人类消费进行测试和认为可以接受的饮用水的饮用水,旨在替代杀菌治疗。B类系统旨在减少正常发生的非疾病滋扰微生物。这些系统并非用于消毒微生物学上不安全的水,并且可能不会提出个体或一般的囊肿主张。微生物健康影响主张可能不会对B类系统提出。
序言:承诺声明 加利福尼亚大学(“大学”)致力于通过学术卓越来维护一个致力于促进、应用和传播知识和创造性努力的社区,所有参加大学项目和活动的人都可以在没有骚扰、剥削或恐吓的氛围中一起工作和学习。 性暴力、性骚扰、报复和本政策禁止的其他行为会干扰这些目标。 大学将及时有效地处理此类行为的报告。 这包括采取行动制止、预防、纠正违反我们政策的行为,并在必要时进行纪律处分。 处理不可接受行为/举止的指南 PI 将对参与此校外/场外研究的任何人的虐待作出反应,包括但不限于任何形式的骚扰、跟踪、欺凌或欺凌,无论该行为是以口头、身体、电子还是书面形式进行的;或根据大学的一般政策做出不受欢迎、冒犯、猥亵、淫秽或扰乱秩序的行为,包括:
- 2017年:〜13,200申请 - 〜15%成功率 - 2018年:〜12,400申请 - 〜16%的成功率 - 2019年:〜12,200申请 - 〜16%的成功率 - 2020年:〜12,900申请-〜16%的成功率
关于 MPS 基础物理科学研究是 MPS 支持工作的核心主题。MPS 科学的核心领域(天文科学、化学、材料研究、数学科学和物理学)继续推进和转化知识,并支持下一代科学家的发展。MPS 资助的科学涵盖范围广泛:从研究过的最小物体和最短时间尺度到宇宙大小和年龄的距离和时间尺度。MPS 继续培养和支持跨学科科学项目,这些项目的范围和复杂性各不相同,从个人研究人员奖励到大型多用户设施。个人研究人员和小团队获得大多数奖项,但中心、研究所和设施都是 MPS 资助研究不可或缺的一部分。这种学科融合和组织研究人员的各种方式使 MPS 能够投资于引人注目的基础科学,这些科学将支撑和推动未来技术的进步,并帮助支持未来几十年强劲的美国经济。通过其中心和研究所计划,MPS 将继续支持前沿科学和从事从基础科学到转化科学的研究的下一代科学家的发展。MPS 中心和研究所涵盖范围广泛,从解决基础数学挑战到开发新材料。研究工具和基础设施是 MPS 将继续资助的关键重点。天文科学、化学、材料研究和物理学领域的中型研究基础设施对于这些学科的发展仍然至关重要。大型研究基础设施也至关重要,并为与国际组织、其他联邦机构和私人基金会建立伙伴关系提供了机会,阿塔卡马大型毫米/亚毫米阵列 (ALMA)、双子座天文台、大型强子对撞机 (LHC) 和国家高磁场实验室等设施就是明证。大型强子对撞机 (LHC) 的升级工程于 2020 年 4 月开始建设,旨在为 NSF 资助的 LHC 探测器做好粒子加速器高亮度运行的准备,而 Vera C. Rubin 天文台项目正在推进智利塞罗帕琼峰顶的物理基础设施以及最先进的数据管理系统和有史以来建造的最大数码相机。丹尼尔 K. 井上太阳望远镜 (DKIST) 位于夏威夷毛伊岛的哈莱阿卡拉山顶,预计于 2021 年底完工,有望成为世界上最强大的太阳天文台。DKIST 在 2020 财年实现了一个关键里程碑,首次看到太阳光芒,以有史以来最高的分辨率拍摄到太阳表面的壮观图像。自 1990 年以来,它探测到引力波
除了标准的 NSF 评审标准(第 VI.A.1-2 节)之外,本征集还进一步阐明了如何将知识价值和更广泛的影响力应用于初创企业和小型企业(第 II 节)。此外,
2022 - 2026 财年战略计划。这些战略融入了计划规划和实施流程,提案审查是其中的一部分。NSF 的使命通过以下方式得到特别好的实施: