摘要 - 本文提出了一种使用M序列多输入多重输出(MIMO)雷达作为功能性脑成像的非电离应用的功能微波成像的新概念。潜在的假设是,如果我们可以准确地检测到大脑内部的血液体积的局部变化,我们可以推断出执行各种任务时大脑的哪些部分被激活。在此角度,根据MIMO雷达框架的主要挑战是基于到达时间(TOA)结果的多目标定位。为此,我们提出了一种在相处的MIMO-RADAR中的多边定位方法,以检测脑介质内部的单个目标。引入了系统概念,并提出了使用简化物理模型的模拟结果。为了验证这一点,我们专注于短距离感应的波形多样性和信号传导策略选项。模拟结果验证了所提出的方法精确计算目标位置的有效性。
摘要 - 本文的特征是针对检测前亮度的负组延迟(NGD)预测指标的原始应用。低通(LP)型NGD预测理论是基于时间预期考虑建立的。制定了预期预测性能功能的分析设计条件。通过使用坡道信号输入来研究和研究LP-NGD预测变量。通过具有不同的上升/下降时间和任意波形信号的梯形测试信号来验证LP-NGD数字预测器具有STM32®微控制器实现的有效性。此外,通过使用NLS-4942亮度光电师提供了实际应用的出色测试结果。LP-NGD预测演示器的设计和实现了不同的时间累积(-30 ms,-50 ms和-70 ms)。计算出的和实验的结果良好一致性显示出负偏斜的瞬态响应。NGD预测变量对于物体检测,汽车安全性和智能建筑舒适性控制系统,对工业应用可能有用。
摘要 近年来,无线传感引起了人们的极大兴趣,即利用无线信号代替传统传感器进行传感。非接触式无线传感已经使用各种射频信号(如 WiFi、RFID、LoRa 和 mmWave)成功实现,从而实现了大范围的应用。然而,受限于硬件热噪声,射频传感的粒度仍然相对较粗。在本文中,我们提出了第一个量子无线传感系统,该系统不使用宏观信号功率/相位进行感测,而是使用原子的微观能级进行感测,将感测粒度提高了一个数量级。所提出的量子无线传感系统能够利用宽频谱(例如 2.4 GHz、5 GHz 和 28 GHz)进行感测。我们用两种广泛使用的信号(即 WiFi 和 28 GHz 毫米波)展示了量子无线传感的卓越性能。我们表明量子无线传感可以将WiFi的感知粒度从毫米级推进到亚毫米级,将毫米波的感知粒度推进到微米级。
DNA 链之间的相互作用是细胞中许多基本过程的关键。DNA 寡核苷酸之间的杂交对于我们最灵敏的 DNA 检测方法至关重要,包括最先进的单分子技术。1–3 单分子技术通过提供有关生物反应和生理过程动力学的细节,丰富了生物分子研究,而这些细节在相应的批量测量中并不明显。在过去的几十年里,出现了强大的单分子传感和成像新方法。一个例子是基于荧光的单分子成像,它通过从高精度时间调制和单分子检测事件的积累中重建图像来克服衍射极限。4–7 其中,光激活定位显微镜
很长一段时间以来,对于这种结构的毒性有限,它已被用作各种ands的抗菌剂,例如食品存储,健康行业,化妆品和纺织品涂料。在过去的几年中,尽管有几次评论评估了AGNP在生物医学ELDS中的特殊属性和应用,但在AGNPRS的综述中存在巨大差距。12,13这些类型的Ag纳米材料具有生物医学应用中传统Ag形式(球形结构)的更有效和多功能替代品,这是由于高灵敏度,特定的c光学特性和可调性。例如,由于缺乏锋利的边缘缺乏锋利的边缘和AGNP的光滑表面,Agnps从弱的表面增强的拉曼散射(SER)中脱离了强大的光学技术,可以放大吸收在粗糙金属表面上的拉曼散射信号。此外,AGNP的吸附仅限于可见光谱,而AGNP的表面积小于Agnprs,从而降低了它们的效率和催化的性能。此外,可以使用更好的光热转化效率进行治疗。14 - 16然而,Agnprs的特定结构证券(这些纳米op的尖端)可能会导致
摘要地表水中药物残留物的发生是一个引起环境问题。要遵循自然资源保护的措施的演变,需要采用敏感和快速的水质监测方法。我们最近管理了束缚粒子运动(TPM)的并行化,这是一种单分子技术,对DNA的构象变化敏感。在这里,我们研究了高吞吐量TPM(HTTPM)检测插入DNA的药物的能力。作为概念证明,我们分析了两个DNA插入染料yoyo-1和Sytox橙的HTTPM信号。随后用阿霉素证明对插入药物的有效检测。我们进一步评估了检测卡马西平的可能性,卡马西平是一种在水中大规模开处方和持续的抗癫痫药,已被描述为通过插入与DNA相互作用。我们通过其他技术证实的结果表明,实际上,卡马西平不是DNA插入量。用不同的水缓冲液和解决方案获得的结果比较使我们能够通过HTTPM确定监测互化化合物的最佳条件。
Injection), a 505(B)(2) product for the US market Ahmedabad, India and Zhuhai, China, February 14, 2025 Zydus Lifesciences Ltd., a global innovation driven healthcare company announced that its wholly owned subsidiary, Zydus Lifesciences Global FZE has entered into an exclusive licensing, supply and commercialization agreement with Zhuhai Beihai Biotech Co.,Ltd for Beizray(白蛋白溶解的Docetaxel注入),美国市场的505(b)(2)产品。根据本协议的条款,Beihai Biotech将负责产品的制造和供应。Zydus将负责美国产品的商业化。Beihai Biotech应按照协议条款获得预付款,基于销售目标的里程碑付款以及在美国赚取的一部分。beizray是第一个经临床验证的,改进的多西他的配方,而没有合成摄取剂,例如多溶胶酯-80或硫丁基醚环糊精。它被溶解在人类衍生的白蛋白中,导致与合成赋形剂相关的不良事件减少。贝格里的NDA于2024年10月23日在美国获得批准。贝ZRay用于治疗乳腺癌,非小细胞肺癌,前列腺癌,胃腺癌和头颈癌。Zydus Pharmaceuticals(美国)的总裁兼首席执行官在谈到该公司时说:“我们很高兴与Beihai Biotech合作,以在美国市场上商业化这种复杂的药品我们对Zydus在该领域的最高位置感到兴奋,并预计将来会有进一步的合作。合作伙伴关系将为我们的战略重点关注高未满足的治疗领域,以及我们陈述的目的是向该国更多的患者提供急需的药物。我们可以肯定的是,通过汇集我们的资源和知识,我们将能够增强更多的患者权力,并帮助他们过上更好的生活质量。” Zhuhai Beihai Biotech Co. Ltd的创始人兼董事长Qun Sun博士评论说:“在美国,首次改进的多西他赛公式的贝兹雷(Beizray)是临床优势的首次改进,在美国为患者提供了针对这些极具挑战性条件的重要治疗方法。Beihai Biotech致力于通过这种合作为所有患者提供创新和高质量的医学。
摘要。抑郁症和焦虑是世界上最常见的精神健康障碍,导致了大量发病和死亡。过去的治疗主要集中在治疗抑郁症和焦虑症上。但是,迫切需要检测慢性压力状态并可能使用即时的个性化干预措施进行干预。现代技术彻底改变了我们被动测量各种生物学和生理信号的能力。在我们的日常生活中,我们从手机,可穿戴技术,手表甚至计算机和汽车中产生大量的电子数据。在此分析中,我们专注于使用Fitbit的可穿戴数据来被动地预测日常情绪状态(例如,悲伤/紧张/焦虑与快乐)。我们使用弹性净回归机器学习算法的日常使用来自38名参与者的每日FITBIT数据和约1200天的数据来预测情绪状态(例如,悲伤/紧张/焦虑与快乐)。我们能够使用交叉验证的机器学习算法准确地预测这些状态,并确定了每个情绪状态的特征。在此概念验证分析中,我们表明,预测日常情绪状态是可行的,并且不仅可能有助于检测日常情绪状态,还可以提高被动意识并提供及时的干预措施。
CRISPR 技术越来越需要对核酸酶活性进行时空和剂量控制。一种有前途的策略是将核酸酶活性与细胞的转录状态联系起来,通过设计引导 RNA (gRNA) 使其仅在与“触发”RNA 复合后发挥作用。然而,标准的 gRNA 开关设计不允许独立选择触发和引导序列,从而限制了 gRNA 开关的应用。在这里,我们展示了 Cas12a gRNA 开关的模块化设计,它可以将这些序列的选择分离。Cas12a gRNA 的 5' 端融合到两个不同且不重叠的结构域:一个与 gRNA 重复碱基配对,阻止 Cas12a 识别所需的发夹结构的形成;另一个与 RNA 触发物杂交,刺激 gRNA 重复的重新折叠和随后的 gRNA 依赖性的 Cas12a 活性。使用无细胞转录翻译系统和大肠杆菌,我们表明设计的 gRNA 开关可以响应不同的触发因素并靶向不同的 DNA 序列。调节传感域的长度和组成会改变 gRNA 开关的性能。最后,gRNA 开关可以设计为感知仅在特定生长条件下表达的内源性 RNA,从而使 Cas12a 靶向活性依赖于细胞代谢和压力。因此,我们的设计框架进一步使 CRISPR 活性与细胞状态挂钩。
随着单细胞转录组的可用性不断提高,RNA 特征为靶向活细胞提供了有希望的基础。分子 RNA 传感器将能够在不同情况下研究和治疗干预特定细胞类型/统计数据,特别是在人类患者和非模型生物中。在这里,我们描述了一种使用作用于 RNA 的腺苷脱氨酶 (RADAR) 进行活体 RNA 传感的模块化和可编程设计。我们验证并扩展了我们的基本设计,表征了其性能,并彻底分析了其与人类/小鼠转录组的兼容性。我们还确定了进一步提高输出水平和改善动态范围的策略。我们表明 RADAR 是可编程和模块化的,并且独特地支持紧凑的 AND 逻辑。除了定量之外,RADAR 还可以区分与疾病相关的点突变。最后,我们证明 RADAR 是一个独立的系统,具有在各种生物体中发挥作用的潜力。