红树林种植园是热带和亚热带海岸可持续管理以捕获和存储大气碳的基本方法。但是,尚不清楚种植红树林的碳积累潜力与天然红树林的碳积累潜力是否一样多。此外,尚不清楚树种,森林时代和流体动力学条件对碳储存的影响。这项研究调查了广东省Huidong县Kaozhouyang种植的红树林的碳储能和影响因素。植被碳库存是通过研究领域调查收集的社区参数计算得出的,生态系统碳库存是通过植被和沉积物的总和来计算的。结果表明,红树林的种植园显着增加了植被和土壤的碳库存(植被碳库存= 9.9645.06 t c/ha;土壤碳库存= 70.37-110.64 t c/ha),与非蔬菜泥浆相比(63.73 t c/ha)。然而,种植地点的生态系统碳储备仍低于天然avicennia码头(282.86 t c/ha),其显着差异主要反映在土壤碳库存上(p <0.05)。进一步的结果表明,碳积累受森林时代,树种和潮汐水平的影响。植被生物量/碳储备随着森林年龄的增长而逐渐增加(p <0.05),但是对于土壤碳储备而言,差异并不重要,这表明在红树林恢复的早期,碳积累主要集中在植被上。此外,合适的栖息地条件(陆路)和快速增长的物种(sonneratia apetala)对碳的积累更有利用。我们的结果表明,红树林种植园可以在植被和土壤中实现碳储存和隔离,从而通过合适的物种选择和管理来增加碳汇。
摘要目的:这项研究旨在比较各种抗氧化剂在防止阿霉素诱导的睾丸毒性和随后在大鼠中的男性不育症的组织学影响。研究设计:横断面研究。研究的地点和持续时间:这项研究是在2023年5月至2024年4月在巴基斯坦白沙瓦白沙瓦医学院的动物室和组织病理学实验室进行的。方法:研究中包括120只雄性大鼠。将大鼠分为六组:对照组,仅阿霉素组和四个接受阿霉素的治疗组以及不同的抗氧化剂。施用的抗氧化剂是维生素C,维生素E,辅酶Q10和硒。组织学分析,以评估抗氧化剂的损伤和保护作用的程度。结果:仅阿霉素组显示出具有统计学意义的组织学损害,包括精子发生和生精小管的变性的明显减少。抗氧化剂治疗的组表现出显着的保护作用,硒组表现出最高的保护水平,非常类似于对照组,其次是维生素E和辅酶Q10,这也提供了睾丸结构的实质性保存。结论:该研究得出的结论是,抗氧化剂,尤其是硒,维生素E和辅酶Q10,为大鼠抗霉素诱导的睾丸毒性提供了重大保护。这些发现表明可能使用这些抗氧化剂来缓解与阿霉素治疗相关的雄性不育症。
结果和讨论:基于代谢组数据,总共鉴定了152个氟代谢物,其中大多数是槲皮素和kaempferol。对三个氟样品中代谢产物的比较分析表明,两种花色苷,peonidin-3-葡萄糖苷和delphinidin 3-(6'' - malonyl-葡萄糖苷)是颜料最有可能造成O. Violeaceus的花瓣的颜色。随后的转录组分析显示,在三组流量中,有5,918个差异表达的基因,其中87个编码了花青素生物合成途径中的13个关键酶。在紫色流中,两个转录因子OVMYB和OVBHHH的高表达表明它们在花青素生物合成的调节中的作用。通过整合代谢组和转录组数据,编码花青素合酶的卵子在紫色流中显着上调。卵形是负责将无色白细胞蛋白酶转化为彩色花青素的酶。这项研究提供了对O. violaceus颜色发育的分子机制的新见解,为浅色颜色育种奠定了基础。
1再生加工厂有限责任公司,34176 US Highway 19 N,棕榈港,佛罗里达州34684,美国; harrell@regenerativeplant.org博士2伯尔尼大学伯尔尼大学解剖研究所,瑞士伯尔尼,伯尔尼2号; valentin.djonov@unibe.ch 3 3心理学系,关于生物和化学危害的有害作用研究中心,Kragujevac大学医学科学学院,69 Svetozara Markovica Street,34000 Kragujevac,塞尔维亚; ana.volarevic@medf.kg.ac.rs 4 Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia 5 Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000诺维·萨德(Novi Sad),塞尔维亚 *通信:vladislav.volarevic@faculty-pharmacy.com;电话: +381-3430-6800
2025 年 1 月 13 日 Andrea Gacki 金融犯罪执法网络主任 美国财政部 邮政信箱 39 维也纳,VA 22183 通过 www.regulations.gov 以电子方式提交 关于:FinCEN 关于住宅房地产报告拟议表格的通知(卷宗编号 FINCEN-2024-0019,OMB 控制编号 1506-0080) 尊敬的 Gacki 主任, 财务问责和企业透明度 (FACT) 联盟是一家总部位于美国的无党派联盟,由 100 多个州、国家和国际组织组成,旨在促进政策建立公平透明的全球金融体系,限制滥用职权避税并抑制腐败金融行为的有害影响。 1 谨代表 FACT 联盟,此信函回应美国财政部金融犯罪执法网络 (FinCEN) 的请求,要求就根据 2024 年 8 月发布的《住宅房地产转让反洗钱条例》最终规则(最终住宅房地产规则或最终规则)提出的住宅房地产报告 (Residential RER) 拟议表格发表评论。FACT 欢迎 FinCEN 提出的表格,并认为该提案中包含的字段适当地减轻了洗钱风险,并将帮助执法部门预防、调查和起诉非法融资案件。最终规则和相关表格与 FinCEN 的核心使命相一致,并服务于该使命,即支持执法部门并保护美国免受非法融资风险。我们认为对某些问题进行轻微改进可能会有助于表格的清晰度
本新闻稿并非 2017 年 6 月 14 日颁布的《欧盟条例》2017/1129(经修订,简称“招股说明书条例”)所指的招股说明书或其他发行文件,作为拟定的索尔维部分拆分计划的一部分,向索尔维股东分配 Syensqo 股份预计不会在招股说明书条例所指的“向公众发售证券”的情况下进行。Syensqo 已准备好一份注册文件,该文件将成为 Syensqo 招股说明书的组成部分,用于在索尔维部分拆分后,允许 Syensqo 的股票在布鲁塞尔和巴黎的泛欧交易所受监管市场进行交易。注册文件以及招股说明书的其他组成部分将在 Syensqo 公司网站 (www.syensqo.com/en/investors/spinoff) 和 Solvay 公司网站 (www.solvay.com) 以及 Syensqo 注册办事处 (地址:Rue de la Fusée 98, 1130 Brussels, Belgium) 上免费提供给投资者。比利时金融服务和市场管理局 (FSMA) 对注册文件或招股说明书任何其他组成部分的批准不应被理解为对 Syensqo 股票在上述受监管市场交易的认可。本新闻稿的分发可能在某些司法管辖区受到法律限制,持有本文提及的任何文件或其他信息的人士应了解并遵守任何此类限制。任何不遵守这些限制的行为都可能构成违反任何此类司法管辖区的证券法。
这项预可行性评估向各种利益相关者介绍了斐济地质公园的概念。它试图提供更多的创造力、思维和证据来指导未来工作的范围。评估提出了斐济地质公园的初步概念,并包括供决策者考虑的建议。通过将地质公园集中在现有旅游基础设施和住宿条件良好的地点,它更有可能通过媒体和熟悉访问吸引旅游经营者和斐济旅游局的支持,并提高公私伙伴关系的可能性。需要进一步评估当地领导的程度,包括省级和地方政府以及 mataqali 领导的保护和养护计划,以确保社区和资源所有者的大力参与。这些因素已被确定为成功开发地质公园的关键基础。详细的现场访问和社区咨询对于确定本评估中确定的选项的可行性至关重要。还需要确定一个组织冠军和多利益相关者管理机制来推动这一进程。
持续感染高危型人乳头瘤病毒 (HR-HPV) 以及随后的病毒癌蛋白 E6 和 E7 上调被认为是宫颈癌变中的关键分子事件 ( 1 , 2 )。这些癌蛋白会干扰关键宿主肿瘤抑制蛋白的功能,导致恶性转化。具体来说,E6 会促进 p53 的降解,p53 是一种对程序性细胞死亡至关重要的肿瘤抑制因子,而 E7 则会抑制通常调节细胞周期进程的视网膜母细胞瘤蛋白 (pRb) ( 3 , 4 )。p53 和 pRb 功能的破坏会导致染色体不稳定和癌症发展 ( 5 )。在各种 HR-HPV 类型中,HPV16 最为常见(其次是 HPV18),是全球 50% 以上宫颈癌病例的诱因 ( 6 – 8 )。 HPV 感染发生在宫颈上皮未分化的基底细胞中,病毒早期蛋白 E1、E2、E6 和 E7 在此细胞中表达水平较低(9)。随着被感染细胞的分化,病毒晚期蛋白 L1 和 L2 产生,用于衣壳的形成和病毒颗粒的组装。E4 蛋白通过与宿主细胞骨架结合协助病毒颗粒的释放(10,11)。高免疫原性的 L1 蛋白的产生受宿主蛋白和表观遗传修饰的调控,确保其仅在分化细胞中表达,从而逃避免疫检测(12)。HPV16 L1 蛋白及其相关 mRNA 在低度宫颈病变和增殖性感染中可检测到,但其缺失与高度病变高度相关(13,14)。虽然 L1 编码序列在转化细胞中保持完整,但衣壳蛋白不会合成(15)。尽管 HR-HPV 感染是宫颈癌的必要前兆,但只有一小部分感染者会发展为宫颈癌 ( 16 , 17 )。目前的 HPV DNA 检测不足以准确识别需要阴道镜检查的 HR-HPV 阳性女性,因为许多感染都是暂时性的 ( 18 )。目前建议对 HPV16 和 HPV18 进行基因分型,并结合细胞学检查进行宫颈癌筛查 ( 19 );然而,需要更特异的生物标志物来分类 HPV16 或 HPV18 阳性的女性,并减少不必要的阴道镜转诊 ( 20 , 21 )。宿主基因和 HPV 基因的甲基化已得到广泛研究,并被证实与宫颈异常有关 ( 22 , 23 )。甲基化修饰,例如 L1 基因内的 CpG 位点甲基化,可以控制该基因的表达,该基因在转化的宫颈细胞中经常被沉默。亚硫酸氢盐测序报告称 3' L1 基因区域的甲基化水平较高,表明其在控制 L1 表达方面具有潜在作用 ( 24 , 25 );然而,亚硫酸氢盐测序和直接测序等方法可能导致临床样本中甲基化水平估计不准确。焦磷酸测序,一种更准确的定量方法,已用于测量 HPV DNA 甲基化,揭示了各种 HPV 类型的 L1 和 L2 区域的高甲基化( 26 , 27 )。最近的研究表明,L1 基因甲基化可以区分宫颈上皮内瘤变 3 (CIN3) 和浸润性宫颈癌( 26 , 28 )。
迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典
联合学习是一种分散的方法,用于训练Glo-Bal机器学习模型而无需在参与者之间共享数据,并且它已成为必须保护有关各方数据的情况下存在的关键解决方案。这在数据驱动的预后,健康管理和异常检测系统中非常重要,因为关键数据所有权在几个原始设备制造商和运营商之间划分。但是,对这项技术的适当提出需要在基础架构上进行大量的前期投资,因为计算,能源和网络能力必须支持边缘上的增加负载,这代表了从集中式范式转移。尽管有这些要求,但汽车行业对这项技术作为协作推动者的潜力表现出了极大的兴趣。该技术的隐私益处得到了充分的认可,但是通常不加区分地使用它,而无需透彻考虑其适当性。为了使这一详细的系统映射进行了详细的系统文献映射,通过分析,我们就联合框架的使用方面的有效性提供了对预测性维护和自动行业中异常检测应用的特定挑战的见解。此外,我们通过确定对该技术实施确实有意义的汽车行业的现实世界应用来做出贡献。我们的研究测试了每个人如何响应不同的数据方案。这些发现突出了对量身定制方法的需求,以满足每个应用程序的独特需求。在此基础上,我们使用广泛采用的模型和聚合策略进行了实验分析,以评估在模拟现实世界条件的各种数据拆分配置下,在各种数据拆分配置下评估了Fedeed Learning的性能。结果表明,FedAvg在平衡数据方面的表现最佳,而FedProx在IMBA分布中表现出色,其正则化技术解决了问题。虽然联邦学习持有承诺,但其实施可能并不总是证明成本是合理的,尤其是如果FraMework仅解决了一些关键挑战时。裁缝联合配置可以优化汽车行业的预测性维护和异常检测,但是要仔细考虑有用性和基础设施成本,这对于长期成功而言是限制的。
