1 密歇根大学计算医学与生物信息学系,密歇根州安娜堡,美国 2 密歇根大学儿科系,密歇根州安娜堡,美国 3 美国国家心肺血液研究所内部研究部人口科学分部,73 Mt. Wayte, Suite #2, Framingham, MA, 01702, 美国 4 斯坦福大学医学院血管外科分部,加利福尼亚州帕洛阿尔托,94305,美国 4 密歇根大学内科系,密歇根州安娜堡,美国 6 密歇根大学内科系心血管医学分部,密歇根州安娜堡,美国 7 挪威科技大学 NTNU 公共卫生与护理系 KG Jebsen 遗传流行病学中心,特隆赫姆,7030,挪威 8 挪威科技大学公共卫生与护理系 HUNT 研究中心,挪威科技大学,挪威勒万厄尔 7600 9 特隆赫姆大学医院圣奥拉夫医院医学诊所,挪威特隆赫姆 7030 10 波尔多大学,法国国家健康与医学研究院,波尔多人口健康研究中心,UMR 1219,F-33000 波尔多,法国 11 迈克尔·克雷森茨下士 VA 医学中心,美国宾夕法尼亚州费城 12 宾夕法尼亚大学佩雷尔曼医学院外科系,美国宾夕法尼亚州费城 13 宾夕法尼亚大学佩雷尔曼医学院遗传学系,美国宾夕法尼亚州费城 14 华盛顿大学生物统计学和医学系心血管健康研究组 15 格罗宁根大学,UMCG,眼科系,荷兰格罗宁根
Håkon Borgen 海上开发执行副总裁 1995 年入职,自 2004 年起成为集团管理层成员。教育/资格:挪威科技大学 (NTNU) 和德国达姆施塔特工业大学 (THD) 工程学硕士,国际管理发展学院 (IMD) 管理学研究生。先前经验:在 Statnett 和 BKK 担任过多个管理职位,涉及电力供应、规划和建设领域,并负责规划和开发。董事职位:ENTSO-E 研究发展和创新委员会 (RDIC) 主席,Fred 董事会成员。Olsen Windcarrier (FOWIC)。曾任 NordLink Norge 和 Statnett Transport 主席,也是 Sway 和 Nordpool spot 董事会成员。
Jan Torgersen是NTNU机械工程学的教授,其研究重点是材料形状及其功能之间的相互作用。Torgersen向我们讲了他在NTNU的生活和工作以及他对更清洁星球的愿景。您的电极项目刚刚获得了150万欧元(诺克1600万欧元)的ERC赠款。该项目的目的是什么?响应用化石燃料的能源需求升高意味着发射另一个发电站。但可再生能源的产生不是这种灵活的,因此我们需要更好的方法来存储能量以符合供求。我们正在研究可以帮助解决此问题的燃料电池,电解器和流气口。在这些设备中,需要在催化剂层上分布燃料,以将其化学能转换为电能以存储,反之亦然。赠款是关于研究燃料是如何通过设备分配的,以及在旅途中损失的能源 - 所谓的大众传播限制 - 以及如何最大程度地减少这些损失。我们建议我们采用基于3D打印的导电微结构的新技术。这种技术有什么不同?我们创建一个过程,在该过程中,直接从计算机模型中创建了化学稳定和导电材料的有序结构。在制造燃料电池所需的尺度上,这是不可能的。到目前为止,由于无法生产燃料电池的电极的最佳设计。我们想在计算机上设计一种传输机构并将其转移到物理原型中。有一个共同的线程吗?您以前关于生物植入物的工作似乎与储能相去甚远。来自我们3D打印机的高分辨率方面。它可以在许多方面模仿细胞外基质(围绕我们组织中细胞的支架)。像电化学装置一样,组织工程支架需要优化液体的流动。在组织中,那是携带营养的体液。我们的3D打印平台是一个工具箱,可以跨越这些长度尺度。我认为我们有其他人没有的可能性。
Jodhpur,20123年8月21日:印度理工学院乔德布尔(Jodhpur)在2023年8月19日至20日在校园内举办了第1次事物与应用程序研讨会(IOTA 2023)。讲习班的演讲是由学术界,行业和研发组织的杰出演讲者进行的,重点介绍了上述物联网应用程序。与会者有机会释放丰富的智慧,获得独特的观点并向尊敬的演讲者学习。The speakers were Dr. Vijay Kovvali, IISc Bangalore, Dr. Punit Rathore, IISc Bangalore, Dr. Manoj Kumar, STMicroelectronics, Noida, Prof. Michael Cheffena, NTNU Norway, Prof. Sudip Misha, IIT Kharagpur, Prof. Ajay Agarwal, IIT Jodhpur and Dr. Sanjay Singh, CSIR-CEERI。
摘要:挪威国家科技大学 (NTNU) 设立了一项为期 8 年的研究项目,研究人类与无人驾驶自主船舶之间的相互作用(除其他事项外)。当船舶操作员远程位于岸上的岸上控制中心时,人将变得更加重要。本概念论文将仔细研究操作员监控多艘船舶的远程决策。当意外突然发生时,界面设计如何帮助他们快速进入循环?在本文中,我建议保留控制船舶的 AI 专家系统的副本,并在控制中心更新并并行运行,以保持操作员在短暂的通信故障期间的态势感知。此外,设计一个“快速进入循环显示”,它将在警报情况下自动出现,让操作员及时获得简单易懂的信息。我还要强调自动化透明度概念的重要性。
X射线计算机断层扫描(CT)的冰岛玄武岩针对CO 2存储的目标揭示了微米级分辨率的内部岩石结构。图像通过岩石体积显示三个正交横截面(左,中,右)。颜色看起来可爆发(LUT)已应用于使灰度数据染色。图像的地质解释包括:充气毛孔的黑色区域,深红色代表长石,浅红色表示Clinopyroxene,而亮黄色亮点Fe-Ti氧化物矿物质骨料(Ulvöspinel和Ilmenite)具有立方体结构的结构。高含氧氧化物矿物质的高密度会导致高X射线衰减,从而使其在CT图像中显得明亮。扫描电子显微镜数据将它们识别为Ulvöspinel和iLmenite。由Prescelli Annan,Ethz中的MCTSCAN实验室,IGV,NTNU,H2024。
本文件由 ECTP(欧洲建筑、建筑环境和节能建筑技术平台)数字建筑环境委员会制定,特别得到了 Jesús Angel García Sánchez (Indra)、Isabel Pinto Seppä (VTT)、Sami 的支持Kazi (VTT)、Javier Bonilla Diaz (Acciona)、Niels Schreuder (AGC Glass Europe)、Miguel Segarra (Dragados)、Mathieu Schumann (EDF)、Laura Tordera (Ferrovial)、Simeon Oxizidis (IES R&D)、Antoine Dugué (NOBATEK/INEF4)、Rita Moura (PTPC)、José A. Chica (Tecnalia)、Ilari Aho (UPONOR)、Paul Cartuyvels (布伊格)、Yacine Rezgui (卡迪夫) University)、Jérôme Defrance (CSTB)、Sylvain Kubicki (LIST)、Rizal Sebastian (TNO)、César Valmaseda (Fundación CTIC)、Eduard Loscos (IDP)、Lizhen Huang (NTNU)、Spyridon Pantelis (REHVA)、Marco Alvise Bragadin (UNIBO)、Noemi Jiménez Redondo (CEMOSA)、Ignacio Pedrosa (Fundación CTIC) 、Pedro Martin Lerones (CARTIF) 和 Alain Zarli (CSTB/ECTP) 的支持销钉创新。
1 拉奎拉大学生物技术和应用临床科学系、放射肿瘤学部,意大利 67100 拉奎拉;giovanniluca.gravina@univaq.it 2 拉奎拉大学生物技术和应用临床科学系、放射生物学实验室,意大利 67100 拉奎拉;alecolapietro@gmail.com(AC);mancio_1982@hotmail.com(AM);alessandra.rossetti@graduateunivaq.it(AR) 3 拉奎拉大学生物技术和应用临床科学系、细胞病理学实验室,意大利 67100 拉奎拉;s.martellucci@sabinauniversitas.it 4 萨比纳大学生物医学和先进技术里蒂中心,意大利 02100 里蒂; vincenzo.mattei@uniroma1.it 5 意大利拉奎拉圣萨尔瓦托雷医院病理学部,67100;lventura@asl1abruzzo.it(LV);mdifranco@asl1abruzzo.it(MDF) 6 意大利罗马大学放射学、肿瘤学和病理学系,00100 罗马,意大利;francesco.marampon@uniroma1.it 7 意大利拉奎拉大学生物技术和应用临床科学系、医学肿瘤学实验室,67100 拉奎拉,意大利; Leda.biordi@univaq.it 8 APIM Therapeutics A/S,N-7100 Rissa,挪威 9 挪威科技大学 (NTNU) 临床和分子医学系,N-7006 特隆赫姆,挪威 * 通讯作者:marit.otterlei@ntnu.no (MO); claudio.festuccia@univaq.it (CF);电话:+47-92889422(密苏里); +39-0862433585 (CF)
作者 Katherine Dykes,国家可再生能源实验室 (NREL) Paul Veers,NREL Eric Lantz,NREL Hannele Holttinen,芬兰 VTT 技术研究中心 Ola Carlson,查尔姆斯理工大学 Aidan Tuohy,电力研究所 Anna Maria Sempreviva,丹麦技术大学 (DTU) 风能 Andrew Clifton,WindForS - 风能研究集群 Javier Sanz Rodrigo,国家可再生能源中心 CENER Derek Berry,NREL Daniel Laird,NREL Scott Carron,NREL Patrick Moriarty,NREL Melinda Marquis,美国国家海洋与大气管理局 (NOAA) Charles Meneveau,约翰霍普金斯大学 Joachim Peinke,奥尔登堡大学 Joshua Paquette,桑迪亚国家实验室 Nick Johnson,NREL Lucy Pao,科罗拉多大学博尔德分校 Paul Fleming,NREL Carlo Bottasso,慕尼黑维尔技术大学Lehtomaki,芬兰 VTT 技术研究中心 Amy Robertson,NREL Michael Muskulus,挪威国立技术大学 (NTNU) Jim Manwell,马萨诸塞大学阿默斯特分校 John Olav Tande,SINTEF 能源研究中心 Latha Sethuraman,NREL Owen Roberts,NREL Jason Fields,NREL
关于在船上安全使用氢的新知识,我们的社会面临着所有部门的气候和环境挑战,海事部门也不例外。在挪威,雄心是刺激海上行业的绿色增长。 挪威海洋管理局(NMA)已参与“海上应用氢和燃料电池”(H2Maritime)的项目,为海上领域的氢和燃料电池的使用有助于研究和建立新的能力。 与使用氢有关的安全问题与常规燃料的安全性不同,需要采取不同的安全措施和障碍。 运营经验,培训材料,操作安全,安全距离和危险区域是一些知识差距。 4年H2-Maritime项目(20219–2023)的主要目标是建立氢混蛋和存储系统的设计标准和操作哲学,以及推进的燃料电池动力系统。 能源技术研究所(IFE)协调并管理了该项目,该项目由挪威研究委员会(80%)和行业合作伙伴资助。 其他参与者包括挪威科学技术大学(NTNU),东南挪威大学(USN),挪威海事管理局(NMA)以及五个行业合作伙伴Equinor,ABB Marine,HAV Design and Solutions,HAV Design and Solutions,UMOE Advanced Composises(UAC)和Vysus Group。 H2 -Maritime项目分为三个工作包(WPS)。 开发了新方法,模型和仿真工具,并用于提供有关与以下方面相关的挑战的更科学和技术洞察力:在挪威,雄心是刺激海上行业的绿色增长。挪威海洋管理局(NMA)已参与“海上应用氢和燃料电池”(H2Maritime)的项目,为海上领域的氢和燃料电池的使用有助于研究和建立新的能力。与使用氢有关的安全问题与常规燃料的安全性不同,需要采取不同的安全措施和障碍。运营经验,培训材料,操作安全,安全距离和危险区域是一些知识差距。4年H2-Maritime项目(20219–2023)的主要目标是建立氢混蛋和存储系统的设计标准和操作哲学,以及推进的燃料电池动力系统。能源技术研究所(IFE)协调并管理了该项目,该项目由挪威研究委员会(80%)和行业合作伙伴资助。其他参与者包括挪威科学技术大学(NTNU),东南挪威大学(USN),挪威海事管理局(NMA)以及五个行业合作伙伴Equinor,ABB Marine,HAV Design and Solutions,HAV Design and Solutions,UMOE Advanced Composises(UAC)和Vysus Group。H2 -Maritime项目分为三个工作包(WPS)。开发了新方法,模型和仿真工具,并用于提供有关与以下方面相关的挑战的更科学和技术洞察力: