摘要:在海事领域,有多个关于远程操作自主船舶的研究和开发项目。其中一项举措是当前的创新项目:由挪威研究理事会资助的陆基自主船舶操作 (LOAS)。该项目于 2019 年最后一个季度启动,并将于 2023 年完成。该项目由 Kongsberg Maritime、IFE 和 NTNU 执行。目标是开发和测试远程操作中心 (ROC) 的交互解决方案,以确保安全有效地监控一艘或多艘完全或部分无人驾驶的船舶。本报告为第一个工作包做出了贡献,该工作包旨在概述当前关于自主船舶远程操作的最新技术。在此基础上,报告提出了以下问题:1) 自主船舶的操作如何纳入管理文件?2) 与远程操作中心的人类操作员相关的重要理论概念是什么?3) 海事领域最近和正在进行的与自主船舶相关的研究和开发案例有哪些? 4) 其他领域的远程操作经验是什么?这些问题通过广泛的文献综述得到回答,访问了 100 多个参考文献。主要发现是需要更新和调整现行国际法规,将自主船舶纳入一种操作模式。此外,诸如态势感知之类的概念
在当地合作的所有阶段,都深入了解不同演员群体的动机,考虑和需求。访谈是由LOC与代表民间社会和市政当局的文化和创意部门,业主/房主,沙箱城市和组织进行的。ntnu和Elia通过黑客马拉松和工作店与来自不同领域的不同领域的学生建立了活动,并自我评估了其在当地合作政府中的学术角色。与我们的合作伙伴一起,我们探索了需求,角色和责任,以及每个演员可以积极做出的贡献。在城市转型的每个阶段,我们在合作的那个阶段确定了每个参与者的最重要决定和行动。结果得到了对受访者提供的其他材料的有针对性的桌面研究的补充,以确认和丰富初步发现。此外,我们还侦察了实现过渡的验证工具和方法。作为下一步,其他关键参与者,例如能源网络经理,移动性和废物运营商将进行研究。总的来说,这些活动为不同演员的旅程提供了见解。此外,与Craft's Sandbox Cities Prague,Bologna和Amsterdam一起,在测试床中,很快将在测试床中进一步验证参与者在相互促进中的特定需求。这些经过验证的结果将在即将到来的第3卷中捕获。
地热能桩也称为热桩,或能量基础或能量桩直接采用垂直钻孔闭环地面源源热泵(GSHP)技术(挪威的能源井)进入桩基础,在该基础中,在其中安装了热交环。能量桩具有通过使用地面作为热源和存储来提供建筑空间加热/冷却的新建筑物的巨大潜力。在冬季,建筑物的能量堆基础被用作热源,以使建筑物在夏季保持温暖和储藏量,以保持建筑物凉爽。最近,随着格拉斯哥协议中规定的,到2030年,到2030年,欧盟致力于将温室气体排放降至1990年的水平,尤其是在奥地利,瑞士,德国和英国等欧洲国家的使用。市场上有多种类型的桩基础,例如铸件和预制驱动的桩。世界各地的大多数项目都在利用位于原位的能源堆,但使用预制驱动的桩仍然很低。最近,我们在NTNU开发了一个驱动的能量桩溶液并申请了专利。谈话将解释这项新兴的专利技术作为能源/存储。
最终报告 IEA Wind 附件 XX:HAWT 空气动力学和风洞测量模型 NREL/TP-500-43508 2008 年 12 月 运营代理代表:S. Schreck 国家可再生能源实验室 国家风技术中心 美国科罗拉多州戈尔登 报告贡献者:C. Masson、École de Technologie Supérieure (ETS)、加拿大 J. Johansen、NN Sorensen、F. Zahle, C. Bak, 和 HA Madsen, Risoe DTU,丹麦 E. Politis,可再生能源中心,希腊 G. Schepers, K. Lindenburg, H. Snel,荷兰能源研究中心 RPJOM van Rooij, EA Arens, GJW van Bussel, GAM van Kuik, F. Ming, T. 圣代尔夫特理工大学,荷兰 A. Knauer, G. Moe,能源技术研究所,挪威科技大学 X. Munduate、A. González、E. Ferrer、S. Gomez、G. Barakos,西班牙国家可再生能源中心 S. Ivanell,瑞典哥特兰大学与皇家理工学院 S. Schreck,美国国家可再生能源实验室
1 莫纳什大学运动游戏实验室,墨尔本,澳大利亚。2 芝加哥大学,美国芝加哥。3 哥本哈根大学,丹麦哥本哈根和萨尔大学,德国萨尔布吕肯。4 康奈尔科技大学,美国纽约。5 斯坦福大学,斯坦福,美国 6 本田欧洲研究所,德国奥芬巴赫 7 奥克兰大学增强人类实验室,新西兰奥克兰。8 萨塞克斯大学 SCHI 实验室,英国布莱顿。9 西北大学,美国伊利诺伊州埃文斯顿。10 挪威国立科技大学计算机科学系,特隆赫姆,挪威和哥本哈根 IT 大学,丹麦。11 微软,美国华盛顿州雷德蒙德。12 迪肯大学,澳大利亚维多利亚州墨尔本。13 庆应义塾大学 KMD,日本东京。14 独立研究员,美国明尼苏达州明尼阿波利斯。 15 美国宾夕法尼亚州匹兹堡 CA Technologies 战略研究部。16 日本东京大学。17 英国诺丁汉大学混合现实实验室。18 德国康斯坦茨大学。19 德国柏林博伊特应用技术大学。20 德国奥尔登堡 OFFIS 信息技术研究所。21 加拿大温哥华西蒙弗雷泽大学互动艺术学院。22 美国剑桥 IBM 研究中心。23 美国马萨诸塞州剑桥麻省理工学院媒体实验室。∗ 作者贡献均等。
1索邦大学,CNRS,Villefranche海洋学(LOV),Villefranche-Sur-Mer,法国2 AIX Marseille Univ。 (Lemar)UMR 6539 CNRS UBO IRD IFREMER,欧洲大学海洋研究所,西布列塔尼大学,普卢赞奈大学,法国普鲁赞奈5个系统研究所,进化论,生物多样性(ISYEB),国家自然历史学博物馆,苏联大学,萨尔伯纳大学,埃弗斯,帕里斯,帕里斯,帕里斯,法兰斯,科学杂志。 Trondhjem Biologication,Trondheim,挪威7 Quebec-Ocean和International Mixed International Munder Takuvik ulaval-CNRS,生物学系,Laval University,Quebec City,Quebec,QUEBEC,加拿大QUEBEC 8 Sorbonne University,CNR,CNRS,CNRS,ROSCOFF,ROSCOFF,FRANCE,FRANCE,FRANCE SCICENCE,QUEBECEFRESS,QUEBECH SACICENT,ROSTARITY和多样性法国法国大学法国大学11地球与环境科学科,系,F.-A。瑞士日内瓦大学环境科学的环境和水生科学研究所12里奇,苏黎世,苏黎世,苏黎世瑞士瑞士日内瓦大学环境科学的环境和水生科学研究所12里奇,苏黎世,苏黎世,苏黎世瑞士
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监控和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室部分向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制的研究挑战。第三,我们提出了未来几年将在实验室中探索的一些研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。