量子AI的量子计算结合以及专家系统为机器学习算法开辟了一个新的可能性领域。Quantum机器学习公式(QML)在涉及处理大数据以及揭示秘密模式时,提供了相当的优势。通过利用量子叠加和纠缠,QML公式可以同时查看许多机会,从而获得更精确的预测以及耐用的设计。在交易背景下,量子AI的增强设备学习能力为创新的交易方法打开了可以动态调整到不断变化的市场条件的创新交易方法,不可避免地会导致更高的回报和降低的威胁。
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
独立于设备的量子密钥分发 (DIQKD) 提供了最强大的安全密钥交换形式,仅使用设备的输入输出统计数据即可实现信息论安全性。尽管 DIQKD 的基本安全原理现已得到充分理解,但为高级 DIQKD 协议推导出可靠且强大的安全界限仍然是一项技术挑战,这些界限要超越基于违反 CHSH 不等式而得出的先前结果。在这项工作中,我们提出了一个基于半有限规划的框架,该框架为使用不受信任设备的任何 QKD 协议的渐近密钥速率提供可靠的下限。具体而言,我们的方法原则上可用于基于完整输入输出概率分布或任何贝尔不等式选择来为任何 DIQKD 协议找到可实现的密钥速率。我们的方法还扩展到其他 DI 加密任务。
量子互联网的愿景是通过实现地球上任意两点之间的量子通信来增强现有的互联网技术。为了实现这一目标,应该从头开始构建量子网络堆栈,以解释量子纠缠的全新特性。第一个量子纠缠网络已经实现,但对于如何组织、利用和管理此类网络,尚无切实可行的建议。在本文中,我们试图制定框架并介绍量子互联网的一些基本架构原则。这旨在提供一般指导和一般兴趣。它还旨在为物理学家和网络专家之间的讨论提供基础。本文件是量子互联网研究小组 (QIRG) 的成果。
为了减轻量子威胁,一种选择是在可行的对称键的安全分布的情况下,将预共享的对称键与经典安全的公共密钥密码相结合。另一种选择是开发公用密码学,可以将其视为安全的经典计算机和量子计算机的攻击。在过去的几年中,这种所谓的量子加密术在NIST上经历了严格的标准化过程,也是ISO标准化工作的主题。结果,将在2024年某个时候提供第一选择NIST标准。许多国家网络安全和通信安全机构提出了建议[1、4、5、6、13、14、18],政府宣布了他们的意图和计划,并计划及时迁移到量子加密后。
i) 一种适用于通用 n 级量子系统的具有普遍有效性的无坐标算法;ii) 当量子发散函数(量子相对熵)满足数据处理不等式(DPI)时,则得到的量子度量满足 MP。
足以建立生化途径的功能网络(经典的例子是糖酵解途径和克雷布斯循环),从而使人们对分子函数的理解可能被视为分子事件的何种词素 - next静态图片。仍然,只有详细的定量物理模拟(与详细的实验具有较高的空间和时间分辨率),将允许高度置信地提取这种图片。经典的分子动力学模拟提供有效的模型,并且可以基于量子力学进行严格的模型(从技术上讲,这是通过Born-Oppenheimer近似近似,该近似是电子和核运动,然后将后者鉴定为经典动力学中的原子运动)。不幸的是,对量子机械方程的更详细的模拟非常困难,只有少数原子才有可能。但是,如果我们要通过当前的硬件和算法开发所推动的量子计算来推进分子模拟,[9-13]我们可能想知道生物分子模拟在多大程度上会从多大程度上受益于这种发展,以及量子计算是否会成为计算量子分子生物学的关键。[15–18]提到的是,问题是,量子计算的新兴分支是否最终可以比传统方法带来重大进步。换句话说,反应虽然正在进行深入的搜索以对生物学功能的量子作用进行深入的搜索,但[19-22]最重要的量子效应首先是植根于生物分子的电子结构,在较小程度上,在其量子核运动中(例如,提高到隧道和动力学同位素效应)。分子的电子结构确实是定量理论描述和通过反应能量和通过Born-Oppenheimer势能表面进行化学反应的定量理论描述和预测的关键(PES;见图1)。
我们提出了一种使用多体分离式化催化的方法来加快量子绝热算法的方法。这将应用于随机场抗铁磁液体自旋模型。该算法的催化方式使得进化在过程中间近似于海森堡模型,并且该模型处于离域相。我们以数字方式显示,我们可以加快标准算法来使用此想法来查找随机模型的基础状态。我们还证明了加速是由于差距扩增而引起的,即使基础模型并非没有挫败感。分频器到加速度大致出现在相互作用的值中,这被称为离域转变的关键。我们还将参与率和纠缠熵计算为时间的函数:他们的时间依赖关系表明该系统正在探索更多的状态,并且比没有催化剂时更纠缠。一起,所有这些证据都表明加速与离域有关。即使只能研究相对较小的系统,但证据表明,该方法的缩放尺寸是有利的。通过一台小型在线IBM量子计算机的实验结果来说明我们的方法,显示了如何随着这些机器的改善来验证该方法。与标准算法相比,催化方法的成本只是一个恒定因素。
uptownBasel Infinity 是 uptownBasel 集团的全资子公司,运营着“QuantumBasel”,即其量子和人工智能能力中心和瑞士首个商业量子中心。租户和 uptownBasel 生态系统(包括企业、研究机构、初创公司和大学)可以无缝访问量子和高性能计算。uptownBasel Infinity 的愿景是让量子的力量民主化,成为一个中立的中心,与各种技术合作伙伴合作构建量子应用和解决方案。首席执行官 Damir Bogdan 在技术、战略和管理方面拥有数十年的经验。他活跃于硅谷,为公司提供创新和转型方面的建议,并且是瑞士国内外多家公司的董事会成员。www.quantumbasel.com
摘要 — 本文深入探讨了量子计算领域及其彻底改变数据加密方法的潜力。利用 IBM 的 Qiskit 工具,我们研究了旨在加强数据安全性的加密方法。首先,我们阐明了量子计算及其在加密中的关键作用,然后对经典二进制加密和量子加密方法进行了比较分析。该分析包括利用 Qiskit 进行量子加密实现的实际演示,强调了基于量子的加密技术所提供的稳健性和增强的安全性。在整个探索过程中,我们解决了该领域遇到的相关挑战,例如现有量子硬件固有的局限性,同时也概述了未来的发展方向。在本文的结尾,读者将认识到量子计算在塑造加密技术未来格局方面的深远影响。
