对潜在技术的详细审查表明,使用 ANT 进行氢气联产是可行的,而且确实可取,因为这有可能为 2050 年低碳氢目标做出很大贡献。热能和电能生产与需求方面的技术之间存在明显的协同作用,与当前的商业替代方案相比,这些技术为低碳氢生产提供了更高的效率。重要的是,业内对这些技术类型之间的联产也有很大的兴趣(来自氢能和核能技术开发商)。对两种技术耦合的潜在机制的研究表明,理想的耦合安排取决于具体技术。成本建模表明,成本有可能与当前其他低碳替代品以及传统的基于化石燃料的方法相媲美,这在一定程度上得益于当前天然气价格的飙升。这些成本中最大的不确定性通常由氢能技术驱动,这与它们当前的技术就绪水平 (TRL) 相一致。
实现经济的净零排放,是防止平均气温持续上升和更频繁、更严重的自然灾害的唯一途径。如果我们要将对人类、财产和我们生活的环境的损害降到最低,我们需要至少在 2050 年实现净零排放。9 全球科学界对气候变化原因和后果的共识没有受到我们国际外交和贸易伙伴的质疑。《巴黎气候协定》是一项国际条约,旨在防止全球平均气温比工业化前水平上升最多 2°C,最好是 1.5°C,包括到 2050 年实现净零排放。10 该协议由 195 个国家签署,包括所有 G20 国家。11 澳大利亚在托尼·阿博特执政期间签署了该协议。在此之前,澳大利亚在霍华德政府期间签署了其前身《京都议定书》。12
19 2019年7月,NRC在联邦公报上发表了一份通知,要求对监管草案的评论,以支持制定规则,以修改其对低级放射性废物的定义,以包括跨硫磺废物。 84美联储。 reg。 35,037(2019年7月22日)。 AEA将经济废物定义为“被原子数量大于92的元素污染的材料,包括Neptunium,Plutonium,Americuim和Curium,并且浓度大于10纳米疗法,每克[NCI/G]或其他浓度是[NRC]可能会以[NRC]的其他浓度来保护公共健康和安全。” 42 U.S.C. §2014(EE)。 在1979年,EPA确定它可以将浓度极限从10 nci/g提高到100 nci/g,而不会超过辐射剂量的安全限制(500 mREM/yr)。 环境保护署(EPA)和DOE随后将定义的经术废物定义更改为100 nci/g(Pecos,2010年)。 EPA对经花性废物的定义包含大于100 nci/g的α发射式经术的同位素,其半衰期大于20年。 40 C.F.R. §§191.02。19 2019年7月,NRC在联邦公报上发表了一份通知,要求对监管草案的评论,以支持制定规则,以修改其对低级放射性废物的定义,以包括跨硫磺废物。84美联储。reg。35,037(2019年7月22日)。 AEA将经济废物定义为“被原子数量大于92的元素污染的材料,包括Neptunium,Plutonium,Americuim和Curium,并且浓度大于10纳米疗法,每克[NCI/G]或其他浓度是[NRC]可能会以[NRC]的其他浓度来保护公共健康和安全。” 42 U.S.C. §2014(EE)。 在1979年,EPA确定它可以将浓度极限从10 nci/g提高到100 nci/g,而不会超过辐射剂量的安全限制(500 mREM/yr)。 环境保护署(EPA)和DOE随后将定义的经术废物定义更改为100 nci/g(Pecos,2010年)。 EPA对经花性废物的定义包含大于100 nci/g的α发射式经术的同位素,其半衰期大于20年。 40 C.F.R. §§191.02。35,037(2019年7月22日)。AEA将经济废物定义为“被原子数量大于92的元素污染的材料,包括Neptunium,Plutonium,Americuim和Curium,并且浓度大于10纳米疗法,每克[NCI/G]或其他浓度是[NRC]可能会以[NRC]的其他浓度来保护公共健康和安全。” 42 U.S.C.§2014(EE)。在1979年,EPA确定它可以将浓度极限从10 nci/g提高到100 nci/g,而不会超过辐射剂量的安全限制(500 mREM/yr)。 环境保护署(EPA)和DOE随后将定义的经术废物定义更改为100 nci/g(Pecos,2010年)。 EPA对经花性废物的定义包含大于100 nci/g的α发射式经术的同位素,其半衰期大于20年。 40 C.F.R. §§191.02。在1979年,EPA确定它可以将浓度极限从10 nci/g提高到100 nci/g,而不会超过辐射剂量的安全限制(500 mREM/yr)。环境保护署(EPA)和DOE随后将定义的经术废物定义更改为100 nci/g(Pecos,2010年)。EPA对经花性废物的定义包含大于100 nci/g的α发射式经术的同位素,其半衰期大于20年。40 C.F.R. §§191.02。40 C.F.R.§§191.02。§§191.02。
在项目开始时没有核工业直接反应后的AM材料辐射经验,AM拉伸标本在测试反应堆(包括316升不锈钢和合金718镍超级合金)中被辐照,后来在Westinghouse Churchill设施的热电池中删除并测试。通过将拉伸测试的标准测试方法与最先进的数字图像相关技术相结合,该团队有效地表征了加性制造的316升不锈钢。将结果与传统的锻炼材料进行了比较,从而成功地证明AM材料具有相似的材料行为特性,以铸造或锻造同一合金的材料。以及其他测试,例如腐蚀测试和染料渗透剂测试,该测试程序使AM材料在核应用中都可以使用。NRC观察到了一些测试,并提供了最先进的物质表征工作的有利反馈。此外,来自Westinghouse和Exelon的成员会见了NRC,并将他们从设计和开发,从设计和开发到测试,资格化,过程控制,许可等方面,以确保NRC意识到实施这项新技术。
Galaxy Advanced Engineering,美国新墨西哥州阿尔伯克基 87111 摘要:本文探讨了纳米技术和 MM(记忆金属)在增强核反应堆设计和运行方面的变革潜力,包括裂变和聚变技术。纳米技术能够在原子尺度上设计材料,显著提高反应堆的安全性、效率和寿命。在裂变反应堆中,纳米材料可以增强燃料棒的完整性、优化热管理并改善堆芯仪表。聚变反应堆受益于纳米结构材料,这些材料可以增强遏制和散热,解决维持聚变反应的关键挑战。SMA(形状记忆合金)或 MM 的集成进一步放大了这些进步。这些材料的特点是在热条件下能够恢复到预定义的形状,提供自愈能力、自适应结构组件和增强的磁约束。纳米技术与 MM 之间的协同作用代表了核反应堆技术的范式转变,有望实现更清洁、更高效、更安全的核能生产。这种创新方法使核工业能够满足日益增长的全球能源需求,同时解决环境和安全问题。关键词:纳米技术、MM、裂变反应堆、聚变反应堆、SMA、核能、反应堆安全、热管理、结构完整性、先进材料。1. 简介
为 AP1000 设计提供纵深防御能力的非安全相关系统示例包括化学和体积控制系统、正常余热去除系统和启动(辅助)给水系统。这些系统利用非安全支持系统,例如备用柴油发电机、组件冷却水系统和服务水系统。AP1000 还包括其他主动非安全相关系统,例如供暖、通风和空调 (HVAC) 系统,它们从仪器和控制 (I&C) 柜室和主控制室中去除热量。在 AP1000 中,这些系统以更简单的形式出现,是当前 PWR 中用作安全系统的熟悉系统。在 AP1000 中,这些 HVAC 系统是简化的非安全第一道防线,由终极防御即被动安全级系统提供支持。
为 AP1000 设计提供纵深防御能力的非安全相关系统示例包括化学和体积控制系统、正常余热去除系统和启动(辅助)给水系统。这些系统利用非安全支持系统,例如备用柴油发电机、组件冷却水系统和服务水系统。AP1000 还包括其他主动非安全相关系统,例如供暖、通风和空调 (HVAC) 系统,它们从仪器和控制 (I&C) 柜室和主控制室中去除热量。在 AP1000 中,这些系统以更简单的形式出现,是当前 PWR 中用作安全系统的熟悉系统。在 AP1000 中,这些 HVAC 系统是简化的非安全第一道防线,由终极防御即被动安全级系统提供支持。
国家核安全管理局(NNSA)没有考虑W87-1弹头的早期主要设计决策中的成本估算,因为它不需要这样做,但是NNSA此后已更改了其指导以要求考虑该成本的指导。根据NNSA官员的说法,依赖于最低或增强要求的功能的设计决策可能会影响成本。我们发现,NNSA尚未尚未研究计划,用于评估NNSA对替代业务程序的分析中详细介绍的最佳实践的剩余决策的成本和收益。nnsa不需要,只建议诸如W87-1之类的程序遵循这些最佳实践。通过指导W87-1计划和未来的武器计划遵循设计研究的最佳实践,或证明和记录偏差,NNSA可以更好地保证设计研究采用一致,可靠和客观的方法。
“政治体制的首要任务是打赢战争。从现在起,它的主要目标必须是避免战争”(Brodie ed. 1946: 76)。这一公理洞见的精神自此被一次又一次地重复,最突出的是里根和戈尔巴乔夫的公式:“核战争不可能打赢,也不应该打。”