可编程的核酸酶 - ZFN,Talens和CRISPR-CAS9 - 配备了具有前所未有的能力,几乎可以随意修饰细胞和生物,在整个生命科学上都有巨大的暗示:生物学,农业,生态学和医学。基于核酸酶的基因组编辑(又称基因编辑)取决于对靶向双链断裂(DSB)的细胞反应。第一个真正可靶向的试剂是锌纤维NU-酸盐(ZFN),表明哺乳动物基因组中的任意DNA序列可以通过蛋白质工程来解决,并在基因组编辑时代介导。ZFN是锌纤维蛋白(ZFP)和FOKI裂解结构域的融合,这是由IIS型Foki型酶的基础研究产生的,该研究显示了具有可分离的DNA结合域和非特定型裂解的二重结构。对3-纤维ZFN的研究确定,预先经过的底物是配对的结合位点,这使目标识别序列的大小从9至18 bp的大小增加了一倍,足以指定植物和包括人类细胞在内的植物和哺乳动物细胞中的独特基因组基因源。随后,显示了ZFN诱导的DSB,可刺激青蛙卵中的同源性结合。基于与Foki裂解结构域融合的细菌故事的转录活化剂样核酸酶(Talens)扩大了能力。Zfn和Talens已成功地用于修改多种顽固的生物和细胞类型,这些生物和细胞类型既不是在先前证明了蛋白质工程的成功,否则很久以前就在CRISPR的到来之前很久。最近向细胞基因组传递靶向DSB的技术是RNA引导的核酸酶,如II型原核生物
图1各种基因组编辑工具。(a)锌指核酸酶(ZFN)充当二聚体。每个单体由DNA结合结构域和核酸酶结构域组成。每个DNA结合结构域由3 - 6个锌指重复序列组成,识别9 - 18个核苷酸。核酸酶结构域由II型限制性核酸内切酶FOK1组成。(b)转录激活剂类似核酸酶(Talens):这些是类似于ZFN的二聚体酶。每个亚基由DNA结合结构域(高度保守的33 - 34个氨基酸序列)和FOK1核酸酶结构域组成。(c)CRISPR/CAS9:CAS9核酸内切酶由SGRNA(单引导RNA:CRRNA和TRACRRNA)引导,用于靶特定裂解。二十个核苷酸识别位点存在于原始基序(PAM)的上游(来自Arora&Narula,2017年)。版权所有©2017 Arora和Narula。这是根据Creative Commons归因许可(CC BY)的条款分发的开放访问文章。
新型基因编辑技术中使用的核酸酶主要有四类,分别是:巨核酸酶、锌指核酸酶(ZFN);转录激活因子样效应核酸酶 (TALEN);以及成簇的规律间隔的短回文重复序列 (CRISPR) 相关 (Cas) (Gaj 等人,2016)。巨核酸酶是一种在特定区域切割 DNA 的内切核酸酶,可识别大于 12 bp(碱基对)的序列。 LAGLIDADG 巨核酸酶家族包含 I-CreI 和 I-SceI,它们是第一种用于基因编辑的酶。由于只有少数氨基酸残基与核苷酸接触,这些酶被设计用于在特定位点切割基因(Paques;Duchateau,2007)。此外,ZFN 是一种人工酶,也是最早用于诱导植物靶向突变的酶之一。这些酶是由锌指型结构域和限制性酶 Fok I 的结构域融合产生的。与基因编辑中使用的其他核酸酶一样,ZFN 会在需要修复的 DNA 特定位置插入双链断裂 (DSB),并且由于修复机制中的故障,可能会出现突变 (Carroll, 2011)。使用该系统的主要问题是这种酶的高毒性,以及它会产生许多脱靶效应(Cornu et al., 2008; Ramirez et al., 2008),这会损害不应改变功能的基因的功能(Zhang et al., 2015)。随着版本的合并
由于其无限的增殖潜力、整倍体状态以及向任何细胞类型分化的能力,人类多能干细胞 (hPSC)(无论是胚胎细胞还是诱导细胞)在疾病建模和生产临床应用细胞方面具有巨大潜力 [ 1 – 3 ]。尽管已经建立了来自患有各种疾病的患者的许多 hPSC 系,但是针对某些病理或罕见基因突变生成 hPSC 系仍然具有挑战性。此外,个体间的遗传异质性可能导致生物学变异,从而使系间比较困难,尤其是来自健康对照和患者的 hPSC 之间的比较 [ 4 , 5 ]。对 hPSC 进行遗传操作的能力为我们引入、修改或校正突变以及生成遗传匹配的同基因对照系提供了机会,从而建立明确的基因型-表型关联 [ 6 , 7 ]。近年来,基于位点特异性核酸酶(包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN),尤其是成簇的规律间隔短回文重复序列 (CRISPR) 系统)的技术已使 hPSC 的基因组工程变得十分灵活 [8,9]。然而,由于 hPSC 的固有特性,包括相对较差的转染效率和转染后存活率低、难以分离克隆群、优先选择和扩增非整倍体克隆以及自发细胞分化,hPSC 工程仍然具有挑战性。为了缓解这些问题,已经描述了几种用于产生各种不同诱变事件的方案 [10-14]。尽管人们投入了大量精力来改进产生转基因 hPSC 的方法程序,但只有少数研究
摘要:基因组编辑领域始于酵母中巨核酸酶(如LAGLIDADG家族归巢核酸内切酶)的发现。继转录激活因子样效应核酸酶和锌指核酸酶发现之后,最近发现的成簇的规律间隔的短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)系统为基因编辑领域的应用打开了新的窗口。本文,我们回顾了不同的Cas蛋白及其相应的特点包括优缺点,并概述了不同的核酸内切酶缺陷型Cas蛋白(dCas)衍生物。这些dCas衍生物由核酸内切酶缺陷型Cas9组成,其可与不同的效应结构域融合以执行不同的体外应用,如追踪、转录激活和抑制以及碱基编辑。最后,我们回顾了这些 dCas 衍生物在体内的应用,并讨论了它们在体内进行基因激活和抑制的潜力,以及它们未来在人类治疗中的潜在用途。
人类线粒体疾病通常是由线粒体 DNA (mtDNA) 突变引起的。线粒体疾病的严重程度与异质体有关,异质体被定义为一个细胞内两种或两种以上不同的 mtDNA 变体共存 ( Taylor and Turnbull, 2005 )。尽管线粒体靶向锌指核酸酶 (mitoZFN) 或线粒体靶向转录激活因子样效应核酸酶 (mitoTALEN) 可用于线粒体基因组编辑,但它们存在局限性,包括单体设计和组装繁琐、序列特异性有限和尺寸较大。CRISPR/Cas 基因组编辑系统是一种强大的工具,可以精确编辑各种哺乳动物和植物的基因组。然而,在线粒体中使用该系统的最大挑战是将外源向导 RNA (gRNA) 递送到线粒体中。之前曾报道过通过茎环基序递送 gRNA 的尝试,但没有有力的证据表明这种方法是成功的。未来,通过 CRISPR/Cas 系统进行线粒体基因组编辑,高效递送带有线粒体定位信号 (MLS) 的 gRNA 以及经过修改的 gRNA/Cas 复合物的有效切割活性将成为必不可少的。
2.1 IBC:机构生物安全委员会 2.2 PI:首席研究员 2.3 CRISPR:成簇的规律间隔短回文重复序列 2.4 TALENS:转录激活因子样效应核酸酶 2.5 ZFN:锌指核酸酶 2.6 NIH OBA:国立卫生研究院生物技术活动办公室 2.7 NIH 指南:NIH 重组和合成核酸分子研究指南 2.8 加强审查:根据 NIH 指南第 III-F 部分,协议提交可能不受 IBC 审查和监督,但如果 TU IBC 自行选择审查某些类型的研究,即使其目前属于豁免实验名单,也需要 TU IBC 加强“加强”审查。基因编辑技术(例如 CRISPR/Cas9)属于此类强化审查,必须提交 TU IBC 并获得批准后才能开始研究。可能导致强化审查增加的因素可能包括 NIH 指南中尚未涉及的新程序、设备或技术等。
摘要:基因组工程使对细胞中DNA序列的精确操纵。因此,这对于理解基因功能至关重要。巨核酸是基因组工程的开始,它继续发现锌纤维核酸酶(ZFN),然后是转录激活剂样效应子核酸酶(Talens)。他们可以在基因组中所需的目标位点产生双链断裂,因此可以用来以相同的方式敲击突变或敲除基因。几年后,通过发现定期间隔短的短质体重复序列(CRISPR)的群集的基因组工程进行了转化。CRISPR系统的实施涉及以RNA为指导的识别和DNA分子的精确分裂。此属性证明了其在表观遗传学和基因组工程方面的效用。crispr曾经并且正在不断成功地用于模拟白血病细胞系和控制基因表达中的突变。此外,它用于识别靶标并发现用于免疫疗法的药物。在本研究中讨论了白血病的描述性和功能基因组学,重点是基因组工程方法。还探索了CRISPR/CAS9系统的挑战,观点,限制和解决方案。
病毒和其他移动遗传元件 (MGE) 对大多数已研究的细胞生物体而言都是潜在威胁,它们充当捕食者或降低适应性。作为应对,生物体进化出了多种防御策略,主要分为先天系统和适应性系统。先天系统的特点是被某些预设的感染特征激活。另一方面,适应性系统可以学会检测以前未被识别的病原体。长期以来,脊椎动物的适应性免疫系统是唯一已知的适应性系统的例子,但已证明古菌和细菌的成簇规律间隔短回文重复序列 (CRISPR)-Cas 系统是真正的适应性免疫系统 (1)。所有已研究的 CRISPR-Cas 系统都基于短 DNA 或 RNA 序列(原间隔区),例如来自病毒基因组的序列,这些序列作为 DNA 间隔区存储在 CRISPR 基因座中。长前体 CRISPR 转录本 (pre-crRNA) 被加工成 CRISPR RNA (crRNA),并被 Cas 蛋白效应子用来定位和摧毁匹配的靶标。根据 CRISPR-Cas 系统的类型,靶标可以是 DNA 或 RNA。CRISPR-Cas 系统种类繁多,目前分为两类。第 1 类包括 I、III 和 IV 型系统,第 2 类包括 II、V 和 VI 型系统。每种系统类型又包括几种亚型 (2, 3)。可编程核酸酶,如锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 Cas9,可通过诱导致残突变在真核细胞中充当抗 MGE 系统。特别是,Cas9 彻底改变了真核生物的基因编辑,已被证明可以有效靶向多种人类病毒 (4)。在基本的 Cas9 技术中,DNA 切割由单一引导
我们的平台 Life Edit 的基因组编辑平台提供了大量且多样化的新型 RNA 引导核酸酶 (LEG)、碱基编辑器和逆转录酶编辑器,可提供灵活的编辑策略和前所未有的访问感兴趣的基因组位点的机会。我们的平台源自 AgBiome 不断增长的数万种专有非致病性微生物集合。
