RNA 疗法已成为治疗多种疾病的下一代疗法。与小分子不同,RNA 靶向药物不受蛋白质上结合口袋可用性的限制,而是利用沃森-克里克 (WC) 碱基配对规则来识别靶 RNA 并调节基因表达。反义寡核苷酸 (ASO) 是一种治疗由基因改变引发的疾病的强大治疗方法。ASO 识别靶 RNA 上的同源位点以改变基因表达。九种单链 ASO 已获准用于临床,几种候选药物正在针对罕见疾病和常见疾病进行后期临床试验。已经研究了几种化学修饰,包括硫代磷酸酯、锁核酸、磷二酰胺、吗啉和肽核酸 (PNA),以实现有效的 RNA 靶向。PNA 是合成的 DNA 模拟物,其中脱氧核糖磷酸骨架被 N-(2-氨基乙基)-甘氨酸单元取代。PNA 的中性假肽骨架有助于增强结合亲和力和高生物稳定性。 PNA 与靶 RNA 中的互补位点杂交,并通过基于空间位阻的机制发挥作用。在过去的三十年中,人们探索了各种 PNA 设计、化学修饰和递送策略,以证明其作为有效且安全的 RNA 靶向平台的潜力。本综述涵盖了 PNA 介导的编码和非编码 RNA 靶向在众多治疗应用中的进展。
核酸检测在各种诊断和疾病控制中起着关键作用。目前可用的核酸检测技术面临着速度、简便性、精度和成本之间的权衡挑战。在这里,我们描述了一种用于快速核酸检测的新方法,称为 SENSOR(硫 DNA 介导的核酸传感平台)。SENSOR 由硫代磷酸酯 (PT)-DNA 和硫结合域 (SBD) 开发而成,可特异性结合双链 PT 修饰 DNA。SENSOR 利用 PT-DNA 寡核苷酸和 SBD 作为靶向模块,与分裂荧光素酶报告基因连接,在 10 分钟内产生发光信号。我们对合成核酸和 COVID-19 假病毒进行了检测测试,结合扩增程序实现了阿摩尔灵敏度。单核苷酸多态性 (SNP) 也可以区分。表明 SENSOR 是一种有前途的新型核酸检测技术。
癌症被认为是控制细胞增殖、分化和体内平衡的基因突变的复杂恶性后果,因此肿瘤治疗极具挑战性。迄今为止,各种载货分子,包括核酸药物(pDNA、miRNA 和 siRNA)、治疗药物(阿霉素、紫杉醇、柔红霉素和吉非替尼)和成像剂(放射性同位素、荧光染料和 MRI 造影剂)已被视为临床应用的潜在药物。然而,由于肿瘤异质性和多种药物耐药性,非单一治疗药物可以产生令人满意的临床效果,而基于纳米技术的联合治疗正在成为增强抗癌效果的重要先进模式。本综述汇集了当前以纳米药物为基础的联合递送小分子药物和核酸进行抗癌治疗的先进发展。此外,明确介绍了其优越性,并详细讨论了克服临床挑战的障碍。最后,展示了未来药物和核酸联合治疗肿瘤的合理方向。
基于核酸的TPD具有以下优势:首先,扩大了细胞内靶蛋白的范围。以核酸基序为弹头的PROTAC已成功用于降解缺乏活性配体结合位点的蛋白质,包括RNA结合蛋白(RBP)、转录因子(TF)和G-四链体(G4)结合蛋白。其次,可用于开发膜蛋白靶向降解的平台(例如双特异性适体嵌合体),核酸适体还可作为靶向递送工具,实现肿瘤特异性靶向降解。第三,核酸基序可作为靶向降解的底物用于治疗RNA疾病。一种新兴的RNA降解技术——核糖核酸酶靶向嵌合体(RIBOTAC)表明PROTAC的嵌合降解原理已扩展到RNA领域。本综述介绍了近年来新兴的基于核酸的TPD策略以及针对核酸(RNA)靶标的靶向降解新策略[3]。
不可否认的是,对于那些无法治愈且已知病因的遗传性疾病患者来说,他们感到沮丧,目前对某些患者来说,只有管理才能解决问题,直到病情恶化导致患者死亡。1,2 当已明确特征的基因变化与遗传性疾病有因果关系时,可以制定专门的治疗方法。几十年来,选择性基因沉默、淬灭或干扰 NAT,以及最近的基因组编辑的吸引力,有望成为人类疾病精准和个性化治疗未来的革命性飞跃。3 – 5 这些疗法具有高度特异性,可以通过精心设计和细致的靶标筛选来限制有害和有毒副作用的实现,这是一个吸引人的特点。6
尽管基于 CRISPR-Cas9 的技术得到了快速而广泛的应用,但用于调节剂量、时间和精度的便捷工具仍然有限。基于使用合成肽核酸 (PNA) 以异常高的亲和力结合 RNA 的方法,我们描述了向导 RNA (gRNA) 间隔区靶向或“反间隔区”PNA,作为以序列特异性方式调节细胞中 Cas9 结合和活性的工具。我们证明 PNA 可以快速有效地以低剂量靶向复合 gRNA 间隔区序列,并且不受序列选择性 Cas9 抑制的设计限制。我们进一步表明,短 PAM 近端反间隔区 PNA 可实现有效的切割抑制(减少超过 2000 倍),并且 PAM 远端 PNA 可改变 gRNA 亲和力以促进靶向特异性。最后,我们应用反间隔物 PNA 来对两个 dCas9 融合系统进行时间调控。这些结果提出了一种新颖的合理核蛋白工程方法,并描述了一种可快速实施的 CRISPR-Cas9 调节反义平台,以提高应用的时空多功能性和安全性。
基因疗法已成为治疗几种可怕和罕见疾病的潜在平台,而这些疾病是传统疗法无法实现的。病毒载体已被广泛探索为基因治疗的关键平台,因为它们能够有效地将基于核酸的治疗剂运送到细胞中。然而,它们在递送过程中缺乏精确度,导致了一些脱靶毒性。因此,人们已经探索了各种非病毒基因递送载体形式的策略,目前已在包括 SARS-CoV-2 疫苗在内的几种疗法中使用。在这篇综述中,我们讨论了脂质纳米颗粒 (LNP) 为有效基因递送提供的机会。我们还讨论了通过微流控技术高通量制造非病毒基因递送载体的各种合成策略。我们最后介绍了这些载体在递送不同遗传物质(如 CRISPR 编辑器和 RNA)方面的最新应用和临床试验,用于治疗从癌症到罕见疾病的不同医疗状况。 2022 由 Elsevier BV 出版 这是一篇根据 CC BY 许可 ( http://creative-commons.org/licenses/by/4.0/ ) 的开放获取文章。
si stem biotine- avidin在杂交中使用非放射性标记的努力已开发出新系统。否,生物过程通常是由许多优点选择的。AIJ与放射性探针相反,它是相当稳定的,它保持了其活性而不会长期失去灵敏度。原则上,该系统由以下步骤组成。a(尿嘧啶)碱是由Bioti修饰的基础,在核酸中未通知。t在t处的生物 - 在高亲和力对链霉丁胺(一种分离的链霉菌蛋白)中。在反应过程中,生物素和链霉亲丁蛋白形成稳定的复合物。与链霉亲蛋白Cathasa相关的酶是在添加底物后产生沉淀的染色的反应。在以前形成的双螺旋桨形成的所有地方,这种冲洗的沉淀物形式,并且具有通过正常显微镜查看(识别)的极好优势。本次会议非常敏感,有些会议已经被设法检测32个目标DNA纤维图(FG)。