意见领袖也被认为对传播过程具有很强的影响力。意见领袖可以是建立在正式或非正式网络中的关系。Rogers (2003) 表示,意见领袖“是其追随者创新行为的典范”(第 27 页),因此他们往往是备受推崇的个人。Valente 和 Davis (1999) 引用了许多研究,这些研究支持这一基本前提,即新思想和新做法通常通过基于人际交流的联系进行传播。事实上,研究人员在 20 世纪 50 年代和 60 年代初研究了政府机构或其他组织中的人际对话对这些环境中信息传播的影响(Valente & Davis 1999)。学者们继续发现,这些联系是创新传播的重要组成部分(Valente 1995)。本质上,意见领袖是具有很强的采用率影响力的个人或组织。著名的广播气象学家、天气供应商或 NWS 可能是广播公司的潜在意见领袖。
硅纳米结构已在现代微电子学中广泛使用。微电芯片中不断增加的整合密度不可避免地导致Si纳米结构的明显温度升高,这是承受大量热应力所必需的,以维持其适当的功能。si纳米结构也是许多新型纳米技术应用的基础,包括能量收集和存储,灵活且可拉伸的电子设备,传感器和纳米机械系统。[1]这些应用的可靠性问题要求对升高温度下的Si纳米结构的机械行为有基本的了解。在这里,我们报告了在RT至600 K的温度范围内单晶Si NWS的原位拉伸测试。[2]我们采用新开发的微电力系统(MEMS)[3-6]来进行透射电子显微镜(TEM)内的纳米热测试。该平台允许在不同温度下同时对原子尺度变形的TEM成像进行应力 - 应变测量。[2,7]基于MEMS的平台内置了一个片上加热器,从而使样品的受控加热。
运营计划将通过整合来自各种 FAA 和国家气象局 (NWS) 传感器和气象信息系统的数据来提供此类改进的气象信息。图 1 显示了 ITWS 的主要数据来源和该系统的一些主要用户。图 1 强调了 ITWS 的一项重要技术特征 - 整合来自各种来源的知识,以提供一套有关机场航站区运行重要天气的信息产品。从历史上看,降水的雷达反射率一直是航站区风暴信息的主要来源,机场地面风、温度和湿度信息则出现在单独的字母数字显示屏上。然而,在确定天气的危险程度和时间演变时,热力学因素(即温度和湿度)、风和风暴微物理过程(例如冰晶的形成)与雷达反射率一样重要。通过以科学合理的方式使用各种数据源,ITWS 可以通过创建无法从传感器单独获取的信息产品来解决上述不足之处。ITWS 将通过两种方式实现其主要目标,即减少延误:直接向 FAA 主管和交通管理人员提供信息,以便他们能够更积极地工作以实现高效
基于Hybrid Inas Josephson连接(JJS)的超导电路在快速和超低功率消耗固态量子电子设备和探索新型物理现象的设计中起着主角的作用。常规上,使用INA制成的3D基材,2D量子井(QW)和1D纳米线(NWS)用于与混合JJS创建超导电路。每个平台都有其优点和缺点。在这里,提议将Inas-ins-on-insun-unsulator(Inasoi)作为开发超导电子产品的开创性平台。具有不同电子密度的半导体INA的表层呈现到Inalas变质的bu效中,有效地用作低温绝缘子,以将相邻的设备电气解除。JJ是使用Al作为超导体和具有不同电子密度的INA的。的开关电流密度为7.3μm-m-1,临界电压为50至80μV,临界温度与所使用的超导体的临界温度相当。对于所有JJS,开关电流都遵循带有平面外磁场的Fraunhofer样图案。这些成就使使用Inasoi可以使用高临界电流密度和出色的门控性能设计和制造表面暴露的Josephson场效果。
自1985年发现有机C 60富勒烯和1991年的碳纳米管[2]以来,已经发表了许多科学论文,将其物理和化学性质描述为新碳材料[3-6]。引起研究人员极大兴趣的主要特征是富勒烯是一种分子形式[1],碳纳米管被认为是结合分子和固体特性的分子间物质[7]。近年来,对纳米结构的碳材料的需求不断增长,用于微电源[8-9],生物医学[10-11],太阳能[12-14],Photonics [15-16]和纳米工程[17-18]在整体物理学的研究中恢复了整体的研究,从(C 60,C 70)在各种有机和无机溶剂中。The most interesting varieties of supramolecular nanoarchitectures less than 1000 nm in diameter based on fullerenes are nanorods [19–20], nanowires [21–22], nanowhiskers (NWs) [23–24], nanotubes [25–26], and nanosheets [27–28].当前,已经开发了几种方法来获得此类富勒烯纳米结构,特别是蒸发饱和溶液的方法[29-30],模板方法
附录列表 附录 A:灾害缓解委员会会议 附录 B:NAFSMA 和 FEMA 文件 附录 C:通话记录 附录 D:公开会议 附录 E:重复损失示例信 附录 F:参与市政灾害缓解计划 附录 G:2020 年灾害缓解计划决议 缩写列表 CDC – 疾病控制和预防中心 CRS – 社区评级系统 DMC – 灾害缓解委员会 EMD – 应急管理部 FEMA – 联邦紧急事务管理局 FIRM – 洪水保险费率图 FIS – 洪水保险研究 HMP – 灾害缓解计划 LOS – 服务水平 NFIP – 国家洪水保险计划 NOAA – 国家海洋和大气管理局 NRCS – 自然资源保护局 NWS – 国家气象局 PMR – 地形图修订 SCDHEC / DHEC – 南卡罗来纳州卫生和环境控制部 SCDNR – 南卡罗来纳州自然资源部 SCDOT – 南卡罗来纳州交通部SCDRO – 南卡罗来纳州灾害恢复办公室 SCEMD / EMD – 南卡罗来纳州应急管理部 SCFC – 南卡罗来纳州林业委员会 SFHA – 特殊洪灾危险区 USACE – 美国陆军工程兵团
图1显示了第一代溅射铂NW的室温LF噪声谱,该NW采用基片阶梯光刻技术制造,其工艺顺序如图2所示。5,7,8,51通过基片阶梯光刻技术制造的NW是多晶的,其晶粒尺寸小于线直径。5,7 – 9,16,20,51 – 54图1中NW的噪声幅度在近五十个频率范围内以1/f 1.15的速率增加。f = 1 Hz时的Hooge参数为γH≅3×10−4,这是溅射Pt线和薄膜的典型值。51,71,96,97方程(2)中噪声幅度的1/N≈1/NA依赖性推测波动来源于体源。 20 世纪 70 年代末到 80 年代中期的几项重要实验证明了缺陷和杂质在金属低频噪声中的关键作用。52,55,66,83,95,98 – 103 一个具有单一特征散射或跃迁时间 τ 的缺陷会导致 RTN,其 Lorentzian 频谱在高于 1/ τ 的频率下下降为 1/ f 2,在低于 1/ τ 的频率下保持恒定。55,62,66,95,104 – 106 第 II.B 节中给出了 ZnO NW 的示例。如果噪声是由具有以下分布的多个缺陷引起的
3 《天气法》于 2017 年 4 月 18 日颁布。 4 NHC 在 https://www.nhc.noaa.gov/cyclones/(2024 年 7 月 29 日访问)上托管活跃热带气旋产品。 NWS 天气预报办公室 (WFO) 发布内陆地区的风灾信息。此外,中太平洋飓风中心和关岛和美属萨摩亚的 WFO 为其各自的责任区发布热带气旋灾害产品。 5 这是一个称为地面实况数据的概念。现场测量也可用于确认或校准远距离收集的数据,例如从卫星收集的数据。与飞机观测相比,卫星数据对风暴位置和强度的确定性较低。 6 NOAA 于 2023 年 6 月 27 日宣布 HAFS 投入运营。HAFS 是 NOAA 的新飓风预报模型。 7 集合是一组以略有不同的初始条件或模型版本运行的计算机天气模型。集合旨在通过平均各种预报来提高预报的准确性,并提供有关预报不确定性的可靠信息。 8 请参阅 https://www.nhc.noaa.gov/verification/verify5.shtml(2024 年 7 月 30 日访问)。 9 请参阅 Landsea, CW 和 JP Cangialosi,2018 年:“我们是否已经达到热带气旋轨迹预报的可预报性极限?” Bull. Amer. Meteor. Soc.,2237-2243。
申请人为 Borden Sum, LLC(特拉华州有限责任公司)、132 Middle Street, LLC(新罕布什尔州有限责任公司)和 134 Middle Street, LLC(新罕布什尔州有限责任公司)(作为共同承租人)以及 AE-ESS NWS 1, LLC(AE-ESS)(特拉华州有限责任公司)(统称“公司”)。AE-ESS 是特拉华州有限责任公司 Agilitas Energy, LLC(Agilitas)的子公司。Agilitas 是美国东北部太阳能和电池储能项目的开发商、所有者和运营商。该公司寻求与收购、拆除、建造和装备约 20,600 千瓦时的电池存储系统相关的财务援助,该系统位于长岛市博登大道 11-24 号一块约 9,700 平方英尺的地块上,并拆除位于其上的现有约 7,000 平方英尺的建筑物(“设施”)。该设施将由 Borden Sum, LLC、132 Middle Street, LLC 和 134 Middle Street, LLC 作为共同承租人拥有,并由 AE-ESS 租赁和运营,将用作能够从纽约电网充电和放电的大型电池存储系统(“项目”)。在运营的前十年,该项目将根据与纽约联合爱迪生公司(“ConEd”)签订的固定价格合同以及纽约独立系统运营商 (NYISO) 的批发能源、容量和辅助服务市场运营。
Wg Cdr (Retd) PK Raveendran SC Wg Cdr Malteesh Prabhu 国家飞行测试中心,航空发展局 班加罗尔 560 015,印度 摘要 印度轻型战斗机 (Tejas) 项目已成功完成全面工程开发 (FSED) 阶段,目前处于初始作战能力 (IOC) 审批阶段。Tejas 计划是印度在军事航空领域追求技术卓越的最佳典范。因此,该计划对所有参与的团体和个人来说都是一次很好的学习经历。本文重点介绍了从这个具有挑战性的计划中吸取的一些教训。术语 ADA 航空发展机构 BMS 刹车管理系统 CLAW 控制律 DFCC 数字式飞行控制计算机 ECS 环境控制系统 EU 电子单元 FCS 飞行控制系统 FSED 全尺寸工程开发 HAL 印度斯坦航空有限公司 HUD 平视显示器 IFCS 综合飞行控制系统 IOC 初始作战能力 IV&V 独立验证和确认 LCA 轻型战斗机 MFD 多功能显示器 MFK 多功能键盘 MFR 多功能旋转(开关) NFTC 国家飞行测试中心 NWS 前轮转向 RFA 行动请求 SOP 标准操作程序 UFCP 前控制面板 Raveendran, P.K.; Prabhu, M. (2005) Tejas 飞行测试:迄今为止的经验教训。飞行测试中 - 分享知识和经验(第 14 页