AL07-01 J 16 | 11:00-11:20 | 0.6叶子带有给定的单数点ElviraPérez-Callejo(大学Jaume I)A07-02 J 16 | 11:30-11:50 | 0.6加权均匀性和实质性Ignacio Breva Ribes(UniversitatdeValència)A07-03 J 16 | 12:00-12:20 | 0.6额叶地图的消失同源性GERS ChristianMuñoz-Cabello(DeValència大学)A07-04 J 16 | 12:30-12:50 | 0.6复杂地图RobertoGiménezConejero(瑞典中部)A07-05 J 16 | 16:30-16:50 |代数几何形状和浮标拓扑中的0.6弧形空间。 神秘关系Javier de la Bodega(AlfrédRényi数学研究所)A07-06 J 16 | 17:00-17:20 | 0.6新版本的Frobenius和理想的整体闭合Kriti Goel(BCCH)AL07-01 J 16 | 11:00-11:20 | 0.6叶子带有给定的单数点ElviraPérez-Callejo(大学Jaume I)A07-02 J 16 | 11:30-11:50 | 0.6加权均匀性和实质性Ignacio Breva Ribes(UniversitatdeValència)A07-03 J 16 | 12:00-12:20 | 0.6额叶地图的消失同源性GERS ChristianMuñoz-Cabello(DeValència大学)A07-04 J 16 | 12:30-12:50 | 0.6复杂地图RobertoGiménezConejero(瑞典中部)A07-05 J 16 | 16:30-16:50 |代数几何形状和浮标拓扑中的0.6弧形空间。神秘关系Javier de la Bodega(AlfrédRényi数学研究所)A07-06 J 16 | 17:00-17:20 | 0.6新版本的Frobenius和理想的整体闭合Kriti Goel(BCCH)
在气候变化和非洲萨赫勒的武装冲突的交汇处,妇女和女孩强迫流离失所。联合国的(IN)有效性。Luiz Henrique Garbellini Filho,塞维利亚大学和康奈尔大学在非洲萨赫勒的CL Imate变化和武装冲突的交汇处,强迫妇女和女孩流离失所。联合国的(in)fectivessions。Luiz Henrique Garbellini Filho,塞维利亚大学和康奈尔大学的脆弱性,抵抗和代理机构:妇女的对方。从性别的角度反映了气候(IM)流动性。玛丽亚·费尔南达·埃雷拉·布尔戈斯(MaríaFernandaHerrera Burgos),rovira i virgili对气候诱导的迁移到肯尼亚生计的影响。玛丽·凯·尼(Mary Kya Nyi),肯雅塔大学
我们研究了最近引入的砖砌量子电路家族中量子信息的传播,该家族概括了对偶酉类。这些电路在时间上是酉的,而它们的空间动态仅在受限子空间中是酉的。首先,我们表明局部算子以光速传播,就像在对偶酉电路中一样,即蝴蝶速度取电路几何允许的最大值。然后,我们证明纠缠扩散仍然可以精确地表征为兼容初始状态家族(事实上,对于兼容对偶酉电路家族的扩展),并且渐近纠缠斜率再次与 Rényi 指数无关。然而,值得注意的是,我们发现纠缠速度通常小于 1。我们利用这些属性来找到纠缠膜线张力的闭式表达式。
Ruben Bibas和Eleonora Mavroeidi(两个经合组织环境局)提供了建模分析。Giulia Galli(经合组织环境局)为起草报告的部分提供了支持。贝尼克·贝恩(Benek Bene),帕夫拉·西哈拉罗(Pavla Cihlarova),彼得·贾诺斯卡(Peter Janoska),约瑟夫·科尔勒(Josefine Koehler),科恩·拉德玛克(Koen Rademaekers),斯特拉·斯拉(StellaSlučiaková),泰乔·史密斯(Tycho Smit ,ÁkosKoós, Katalin Leskovich,KornélMátéffy,Timea Somlai-Gilányi和ÁdámVida(All BayZoltánNonnon-Profit Ltd.)开发了针对生物质和食品和食品,建筑,塑料和塑料教堂的分析。ZoltánBarna-Lazar,Zsanett Brunner,BendegúzCsányi和Fruzsina Kardoss(全部Ex ante Ltd),Peter Lenkey和Viktor Varga(确切的LTD),以及BálintMalatinszky,bálintHorváthrintHorváthanenorane n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n noraul horaul noraul noraul norane n n n n n n n n n n n n n n an n an。 Ltd和Exact Ltd)负责对本报告提出的政策建议进行战略环境评估。Ivan Babiy,Ijeoma Inyama-Dalles和Aziza Perriere(所有经合组织环境局)和Katjusha Boffa和Emily Seftel(前OECD环境局)提供了行政支持。报告的记录复制了Cathleen Lee(独立编辑)的支持。Illias Mousse Iye(经合组织环境总监)和Meral Gedi(独立编辑)格式出版了报告,Lea Stapper(OECD Envorymitrate)支持为报告创建通信材料。该报告的通信材料的图形设计是由Andrew Esson(独立的图形设计师)开发的。
我们用数值方法研究了 1 + 1 维 Haar 随机量子电路的测量驱动量子相变。通过分析三部分互信息,我们能够精确估计临界测量率 pc = 0 . 17(1)。我们提取了与渗透值以及稳定器电路值一致的相关体积临界指数的估计值,但与 Haar 随机情况的先前估计值不同。我们对表面序参数指数的估计似乎与稳定器电路或渗透的估计值不同,但我们不能明确排除三种情况下所有指数都匹配的情况。此外,在 Haar 情况下,纠缠熵 S n 的前因子强烈依赖于 Rényi 指数 n ;对于稳定器电路和渗透,这种依赖性不存在。稳定器电路的结果用于指导我们的研究并识别具有弱有限尺寸效应的度量。我们讨论了我们的数值估计如何限制转变理论。
在本文中,我们展示了非稳定器资源理论如何量化直接保真度估计协议的难度。特别是,对一般状态进行直接保真度估计所需的资源,例如 Pauli 保真度估计和影子保真度估计协议,会随着稳定器 Rényi 熵的增加而呈指数增长 [1]。值得注意的是,这些协议只对那些无法获得任何量子加速或优势的状态可行。这一结果表明不可能有效地估计一般状态的保真度,同时为那些专门用于直接估计特定状态保真度的协议打开了一扇窗户。然后,我们将结果扩展到量子演化,表明证明给定酉 U 实施质量所需的资源受与 U 相关的 Choi 状态的非稳定器控制,而这已被证明与超时序相关器有着深刻的联系。
我们研究了一种基于高斯态的 Szilard 引擎,该系统由两个玻色子模式组成,位于一个噪声通道中。系统的初始状态为纠缠压缩热态,通过对两个模式之一进行测量来提取量子功。我们使用马尔可夫 Kossakowski-Lindblad 主方程来描述开放系统的时间演化,并使用基于二阶 Rényi 熵的量子功定义来模拟引擎。我们表明,可提取的量子功随着库的温度和模式之间的压缩、热光子的平均数量和模式的频率而增加。功也随着测量强度的增加而增加,在异差检测的情况下达到最大值。同样,随着噪声通道的压缩参数的增加,可提取的功也在减少,并且它随着压缩热库的相位而振荡。
摘要:Belavkin – Staszewski相对熵自然可以表征量子状态可能的非交通性的影响。在本文中,通过用Belavkin – Staszewski相对熵替换量子相对熵来定义两个新的条件熵项和四个新的相互信息项。接下来,研究了它们的基本属性,尤其是在经典量子设置中。特别是我们显示了Belavkin -Staszewski条件熵的弱凹性,并获得了Belavkin -Staszewski共同信息的链条规则。最后,建立了Belavkin – Staszewski相对熵的子效率,即,关节系统的Belavkin -Staszewski相对熵小于其相应子系统的总和,借助某些乘法和附加因子的帮助。同时,我们还提供了几何rényi相对熵的一定亚辅助性。
位于中欧的Pannonian盆地是地热能剥削的最有希望的地区之一。盆地的特征是有利的地热条件,包括高地热梯度和明显的热流密度。这些特征使盆地成为地热能生产的理想选择(Dövényi&Horváth,1988;Kovács等,2007)。盆地的地质历史是由复杂的构造相互作用和沉积过程塑造的。这一历史导致了广泛的沉积沉积物,主要是砂岩,粘土和泥浆。这些地层,尤其是Dunántúl组(DG)中的地层,以其孔隙率和渗透性而闻名。这些属性增强了其对地热能生产的适用性(Horváth等,2015;Nádor等,2020)。
14单极397 14.1田间理论397 14.1.1'T HOOFT-POLYAKOV MONOPOLE 397 14.1.2电荷量化条件399 14.1.3单极质量和结构400 14.1.1.4 Bogomol'nyi Bound和Prasad-sonunerfield lim and lim lim lim 401 14.1.1.1.1.1.1.1 14.24.24.24.24.24.24.2 nmifification 40.2。阻力力403 14.2.2 Baryon衰减催化405 14.3单极的形成和演变406 14.3.1形成406 14.3.2歼灭机制407 14.3.3观察界410 14.3.4溶液求解单台面问题412 14.4单翼412 14.4单调413 14.4.14.41413 1413 1413 1413 1413 1413 1413 143 14.4.3 Langacker-Pi型号418 14.4.4因果关系419 14.4.5亚稳态单杆?420 14.5全局单脚孔421 14.5.1物理性质421 14.5.2重力场423 14.5.3进化425 14.5.4宇宙学含义426 14.5.5通过串连接的全球单极427
