超纠缠光子源因其高信息容量而在量子信息处理中起着至关重要的作用。在本文中,我们展示了一种通过热 87 Rb 原子蒸汽中的自发四波混频 (SFWM) 产生偏振和轨道角动量 (OAM) 超纠缠光子对的便捷方法。偏振纠缠是通过在构成相位自稳定干涉仪的两个光束位移器的帮助下相干地组合两个 SFWM 路径来实现的,OAM 纠缠是通过在 SFWM 过程中利用 OAM 守恒条件实现的。我们的超纠缠双光子源具有高亮度和高非经典性,可能在基于原子-光子相互作用的量子网络中有广泛的应用。© 2020 美国光学学会
在此应用说明中,我们将讨论折射元素阵列的制造,以生成带有光角动量(OAM)的电磁波。此光学功能先前以各种方式实现,包括一对精确排列的圆柱晶状体,螺旋相板(SPP),静态或动态DOE(其中动态版本是通过液体晶体空间光调节器获得的,或者最近通过metasurfaces获得的。然而,通常将其他元素插入下游的光学路径中,以抵消带有OAM模式的光束的自然差异或在需要进行聚焦的应用中利用其特性,例如将OAM在光纤中进行耦合,以在电信中或在电信中进行波动或浮动浮动的浮动浮动型浮动或浮动浮动的浮动。
高功率激光脉冲一直是科学研究的重要组成部分,自Chirped Pulse Amplifation(CPA)发明使他们的一代变得更加可行。它们对于从激光唤醒物理学的应用研究(例如激光唤醒场)到对激光 - 血压相互作用的更基本研究以及探测非线性真空量子动力学(QED)效应的更多基本研究至关重要。2因此,已经对这些高功率脉冲的时间和空间方案的表征进行了大量研究。光的轨道角动量(OAM)是量化的电磁辐射自由度,其特征是梁u的横向相反的方位相依赖性; /þ / e l h,其中uðq; /; zÞ是该函数,它表征了圆柱坐标中的横向图,而L是方位角模式数,它量化了模式的OAM。与更熟悉的旋转角动量(SAM)不同,该动量与光的圆极化状态有关,OAM是无限的,可以采用任何整数值。自艾伦(Allen)等人以来。首先是电磁波
具有轨道角动量(OAM)的电磁波是用于光学通信,量子技术和光学镊子应用的强大工具。最近,它们引起了人们日益增长的兴趣,因为可以利用它们在手性分子培养基和磁性纳米结构中检测特殊的螺旋二分性效应。在这项工作中,我们使用螺旋区域板上产生的不同拓扑充值订单的极端紫外线OAM光束在种子自由电子激光器的纳米结构对象上进行单次射击。通过控制ℓ,我们演示了如何改善约30%的inimageresolutionWitheStocontocontocontocontoContocontoContoconalGaussianBeamiltion.lissultExtendSendSthecabababapabableftersiqualsthecapablextendSthecapibilitys of ThisextendSthecapibilitys of Cooherent decraction diffraction Techniques of Cooherent diffraction Techniques,并逐步实现较大的级别范围(以下较高的时间范围)(下面是更高的范围)。©2024 Optica Publishing Group根据Optica Open Access Publishing的条款
目的:尽管口服抗癌药物 (OAM) 对乳腺癌 (BC) 女性具有救命的功效,但依从性仍然不理想,而且在许多情况下没有得到很好的记录。该研究调查了尼日利亚接受 BC 治疗的女性依从 OAM 的障碍和促进因素。患者和方法:该研究以世界卫生组织 (WHO) 依从性多维模型为框架。我们对尼日利亚南部两家三级医院的 16 名有目的抽样的女性进行了定性的深入访谈。访谈被录音并逐字转录。使用框架方法分析访谈数据。结果:提到的 OAM 依从性的主要障碍是社会经济因素(药物成本高)和治疗相关因素(药物副作用)。提到的依从 OAM 的主要促进机制包括; (i) 患者相关的社会心理因素,如自我鼓励和自律,坚持按处方服药、每天在特定时间服药、获得家人的实际支持;以及 (ii) 医疗团队/系统因素,如在药房获得足够的药物供应。结论:OAM 依从性的障碍和促进因素是多方面的。研究结果强调了多方面干预(如患者教育和监测或促进成本控制和副作用管理的策略)对优化依从性的潜在益处。因此,我们的研究结果可能有助于设计和评估针对关键障碍和方法的特定环境依从性措施和多方面干预策略,从而使依从性能够改善患者的治疗效果。关键词:药物依从性、口服抗肿瘤药物、乳腺癌、女性经历
摘要:轨道角动量 (OAM) 用方位角相位项 exp ð jl θ Þ 描述,具有具有不同拓扑电荷 l 的不受约束的正交态。因此,随着全球通信容量的爆炸式增长,特别是对于短距离光互连,光承载 OAM 由于其正交性、安全性以及与其他技术的兼容性,已证明其在空分复用系统中提高传输容量和频谱效率的巨大潜力。同时,100 米自由空间光互连成为“最后一英里”问题的替代解决方案,并提供楼宇间通信。我们通过实验演示了使用 OAM 复用和 16 进制正交幅度调制 (16-QAM) 信号的 260 米安全光互连。我们研究了光束漂移、功率波动、信道串扰、误码率性能和链路安全性。此外,我们还研究了 260 米范围内 1 对 9 多播的链路性能。考虑到功率分布可能受到大气湍流的影响,我们引入了离线反馈过程,使其灵活控制。
携带轨道角动量 (OAM) 的表面等离子体极化子,即等离子体涡旋,在光学捕获、量子信息处理和通信领域引起了广泛关注。先前对近场 OAM 的研究仅限于产生单个等离子体涡旋,这不可避免地降低了进一步的片上应用。几何超表面是超材料的二维对应物,具有前所未有的操控电磁波相位、偏振和振幅的能力,为控制等离子体涡旋提供了灵活的平台。在这里,我们提出并通过实验演示了一种基于几何超表面实现太赫兹 (THz) 等离子体涡旋复用的方法。在圆偏振 THz 波的照射下,在金属/空气界面处产生多个具有相同拓扑电荷的等离子体涡旋。此外,还展示了从自旋角动量到多个等离子体 OAM 的转换,即具有不同拓扑电荷的多个等离子体涡旋。由具有不同平面方向的成对空气缝组成的几何超表面旨在展示这些特性。我们提出的方法可能为信息容量不断增加的片上应用开辟一条道路。
• Enflame 在 OAI 社区 • Enflame OAM 产品系列 • 液冷 OAI 系统 • CloudBlazer Matrix - OAI 训练集群 • 软件堆栈:CloudBlazer Station
我们感谢奥运会双料冠军 Nova Peris OAM、Patrick Johnson 和 Danny Morseu 所做的上述工作,这些工作摘自澳大利亚的《高性能 2032+ 体育战略》。我们还要感谢 HP2032+ 体育战略原住民和托雷斯海峡岛民咨询小组允许我们在“打好比赛战略”中使用此措辞,确保我们与国家的联系从社区体育到高性能体育都统一起来。Nova Peris OAM 是东金伯利的 Gija 人和西金伯利的 Yawuru 人以及西阿纳姆地的 Iwatja 人和 Gagudju 人的后裔。Patrick Johnson 是来自昆士兰州最北部的骄傲的 Kaanju 人。Danny Morseu 是托雷斯海峡岛民,出生于昆士兰州最北部的星期四岛。
简介。自从Øersted发现通过电流携带的线发现指南针的偏转以来,一直不断研究磁性自由度的电气操作。现代研究已经在旋转轨道相互作用[1-4]提供的磁电耦合上进行了促进,而近期有力的近期效率是针对没有旋转轨道耦合的系统中轨道自由度的电气操作[5-12]。这项工作集中在意识到Bloch电子对其质量中心具有轨道角(OAM)[13]的意识到,这部分与浆果曲率相关[14-18]。OAM会影响半经典量化[15,17,18],有助于某些材料的磁化[19-21],影响dirac材料的Zeeman分裂[22,23],并归因于非线性磁铁抗性,valley-Hall-Hall-Hall-Hall效应,Valley-Hall效应[19,24,24,25],以及Anomalos nerners nernSt效应[26]。