欧洲正面临双重挑战 - 到2050年,将社会和工业转变为第一个气候中立大陆,而不会威胁我们的竞争力或工作,同时通过减少临界价值链中的依赖性来实现战略自治。“在当今的新不确定的地缘政治背景下,欧盟对能源和原材料供应的安全性以及清洁技术行业的全球补贴竞赛的关注,我们的工会需要加强政策制定者与关键行业之间的合作。这种合作伙伴关系将确保协调和强大的清洁工业交易实施,从而闪烁宣布的立法行为,重点是在欧洲战略清洁技术领域(例如电池)建立竞争价值链。2025是我们大陆的电池行业和欧盟行业在能源过渡中的未来作用的“制造或休息年””,von dalwigk继续
自动驾驶汽车(AVS)在没有人类干预的情况下做出决定。因此,确保AVS的可靠性至关重要。尽管在AV开发方面进行了重大研究和发展,但由于其操作环境的复杂性和无预测性,它们的可靠性仍然是一个重大挑战。基于方案的测试在各种驾驶场景下评估了AVS,但无限数量的潜在方案突出了识别可能违反安全或功能要求的关键场景的重要性。此类要求本质上是相互依存的,需要同时进行测试。为此,我们提出了MOEQT,这是一种新型的多目标增强学习(MORL)的方法,以生成关键场景,同时测试相互依存的安全性和功能要求。MOEQT将包络Q学习作为Morl算法,该算法会动态调整多目标权重以平衡多个目标之间的相对重要性。MOEQT通过动态与AV环境进行动态交互,生成关键场景,以违反多PLE要求,从而确保全面的AV测试。我们使用高级端到端AV控制器和高保真模拟器评估MOEQT,并将MOEQT与两个基准进行比较:随机策略和具有加权奖励函数的单对象RL。我们的评估结果表明,MOEQT在确定违反多个要求的关键方案方面取得了更好的表现。
摘要 - 可构造的对象操纵是一个充满挑战的研究主题,它引起了对机器人领域的日益兴趣,因为已经出现了解决此问题的新方法。到目前为止,文献中的大多数提出的方法都集中在形状控制上。被忽略了应用于物体的应变,因此排除了操纵脆弱产品的大部分工业应用,例如橡胶和塑料物体的脱胚层或食物的处理。这些应用需要在准确性和仔细操纵之间进行权衡,以保留操纵对象。在本文中,我们提出了一种方法来最佳控制线性和平面变形对象的变形,同时还最大程度地减少对象的变形能。首先,我们修改了最初为线性软机器人控制开发的框架,以使其适应可变形的物体机器人操作。为此,我们将问题重新制定为一个优化问题,其中考虑对象的整体形状,而不是仅专注于对象的位置和方向的尖端。然后,我们在成本函数中包含一个能量项,以找到在达到所需形状的同时最小化操纵物体中潜在的弹性能量的解决方案。对于高非线性问题的解决方案众所周知,很难找到对局部最小值的敏感性。我们定义了连接对象的已知初始和最终配置并顺序解决问题的中间最佳步骤,从而增强了算法的鲁棒性并确保解决方案的最佳性。然后使用中间最佳配置来定义机器人的终端效果轨迹,以使对象从初始配置变形为所需的配置。索引术语 - 可通知的对象操纵,机器人技术,形状控制,优化,轨迹生成
图1。进化多目标优化为多层设计提供了合适的框架。在这项工作中,我们研究了如何通过多物镜优化方法将机器学习模型(例如PMPNN,AlphaFold2/af2rank和ESM-1V)直接集成到蛋白质序列设计中,称为非主体分类遗传算法II(NSGA-II)。左:首先,通过突变操作员提出了新的设计候选。在这里,该操作员由ESM-1V组成,ESM-1V用于对残基位置进行排列,以及用于重新设计最小Nativelike-NativelikeTose的ProteinMPNN(PMPNN)。中间:然后使用源自AlphaFold2和PMPNN置信度指标的目标函数对设计候选者进行评分。右:最后,得分的候选人被分类为连续的帕累托阵线(这里编号为F1至F5),NSGA-II从最佳战线中选择了最佳战线的候选人。为了证明该框架的有效性,我们对RFAH的多层设计问题进行了深入的分析,RFAH是一种小的折叠式蛋白质,其C末端结构域可以在全-αRFAHα状态和全βrfahβ状态之间互连。在中间面板的两个RFAH状态的卡通表示中,以绿色表示可设计的位置(残基119至154);请注意,N端结构域在RFAHβ态的带状表示中未显示(请参见方法)。
Bortolini M.,Calabrese F.,Galizia F.G.,Mora C.(2022)。 中期可持续供应链网络设计的三个目标优化模型。 计算机与工业工程,168,1-16 [10.1016/j.cie.2022.108131]。Bortolini M.,Calabrese F.,Galizia F.G.,Mora C.(2022)。中期可持续供应链网络设计的三个目标优化模型。计算机与工业工程,168,1-16 [10.1016/j.cie.2022.108131]。
摘要 - 预计自动驾驶汽车(AV)将采取安全有效的决定。因此,AVS需要对现实世界的情况进行健壮,尤其是应付开放世界的设置,即处理新颖性的能力,例如看不见的对象。经典的对象检测模型经过训练,以识别一组预定义的类,但在推理阶段很难概括为新颖的类。开放式对象检测(OSOD)旨在解决正确检测未知类别对象的挑战。但是,自主驾驶系统具有特定的开放式特性,这些特性尚未涵盖OSOD方法。的确,检测误差可能导致灾难性事件,强调优先考虑盒子检测质量而不是数量的重要性。此外,可以利用在公路场景中遇到的物体的特定特征来改善其在开放世界中的检测。在这种情况下,我们介绍了一种新的自主驾驶感知对象的定义,从而实现了AV专业的开放式对象检测器创建的ADO的命题。所提出的模型使用了一个新的分数,该分数从语义分割的背景基础真理中学到了。在道路对象评分上的这一点可以衡量该对象是否在可驱动区域上,从而增强了未知检测的选择。实验评估是在模拟和现实世界数据集上进行的,并揭示我们的方法的表现优于未知对象检测设置中的基线方法,在已知对象上与封闭式对象检测器具有相同的检测性能。
图3。透明对象识别和分割的光场失真功能在允许的情况下重现26。版权所有2015,Elsevier Inc.(a)背景失真来自不同对象,(b)背景失真从改变观点而变形,表明光场的失真与对象本身密切相关。(c)光场传播,表明透明对象的参与会改变光场的分布和相位。
本文档中的插图和插图在创意共享归因下获得红色帽子的许可 - 相似于3.0未体育的许可证(“ CC-BY-SA”)。可以在http://creativecommons.org/licenses/by-sa/3.0/上获得CC-BY-SA的解释。根据CC-BY-SA,如果您分发此文档或对其进行改编,则必须为原始版本提供URL。
2024 年 12 月 6 日,艾伯塔省政府出台法规,对该省新发电厂的开发施加新的限制,并制定新的监管要求。这些变化是在艾伯塔省公用事业委员会 (AUC) 完成其对艾伯塔省电力生产持续经济、有序和高效发展的调查“模块 A”并发布其关于适用于该省发电厂开发的土地使用考虑因素的模块 A 报告 [PDF] 大约 10 个月后发生的。
a。奈良科学技术学院科学技术研究生院,8916-5高山 - 哥,马萨诸塞州伊科马,奈良630-0192,日本。b。数据科学中心,奈良科学技术学院,8916-5高山 - 俄罗斯州,伊科马,奈良630-0192,日本。c。材料信息学计划,RD技术与数字化转型中心,JSR Corporation,3-103-9 TOMAN-ACHI,KAWASAKI-KU,KAWASAKI,KANAGAWA,KANAGAWA 210-0821,日本。d。精细的化学工艺部,JSR Corporation,100 Kawajiri-Cho,Yokkaichi,MIE 510-8552,日本。e。 Keio大学科学技术学院化学系,日本Kohoku-Ku 3-14-1 Hiyoshi,Kohoku-Ku,Kanagawa,Kanagawa 223-8522,日本。f。奈良科学技术学院材料研究平台中心,8916-5高山 - 俄罗斯州,伊科马,纳拉,日本,伊科马630-0192。关键词聚合物,流量合成,自由基聚合,贝叶斯优化,多物镜贝叶斯优化,苯乙烯,苯乙烯,甲基丙烯酸甲酯