因此,除了理论工作之外,德国航空航天中心(DLR)微波与雷达研究所还开发并构建了一种名为 IoSiS(太空卫星成像)的实验雷达系统,用于对获取低地球轨道物体的先进高分辨率雷达图像产品的新概念进行基础研究。本文概述了使用地面 ISAR 对卫星进行高分辨率成像的原理。此外,还概述了实验雷达系统 IoSiS,并简要概述了计划中的 IoSiS-Next Generation 系统概念。最新的真实空间目标测量结果证明了该系统的能力以及使用厘米分辨率成像雷达进行未来基于雷达的空间监视的潜力。作为基于雷达的空间物体成像领域的新产品,全面的模拟结果表明,使用通过多静态成像几何实现的新预期成像概念,可以多么精确地在三维空间中对空间目标进行成像。
当Arc的琼(Joan of Arc)将这封信发送给Riom的公民时,她正计划围攻La-Charité-Sur-Loire镇,但她的军队的补给品很低。她恳求这座城市通过发送火药和军事装备来协助。是文盲,琼(Joan)将她的信命令写给抄写员,但最后签名了她自己的名字“耶汉妮”(Jehanne)。这是琼(Joan)签名的三个幸存例子中的最早,她的大型不确定信件表明她对写作不熟悉。
量子力学中的许多基本和关键对象是特定仿射/线性空间之间的线性映射。该结构包括基本的量子元素,例如状态,测量,通道,工具,非签名通道和带有内存的通道,以及高阶操作,例如超级信道,量子梳子,n时间过程,测试人员和过程矩阵,这些矩阵可能尚未确定可因子序。根据线性和半限制约束来推导和表征其结构属性,不仅具有基本相关性,而且在启用对量子对象集的数值优化方面起着重要作用,并允许在不同概念和对象之间进行更简单的连接。在这里,我们提供了一个通用框架,以直接且易于使用的方式推导这些属性。主要以实用的量子机械考虑为指导,但我们还将分析扩展到一般线性/仿射空间之间的映射并得出其性能,为分析集合的可能性开放,而这些集合并未被量子理论明确掩盖,但仍未得到太多探索。一起,这些结果可为所有需要线性转换特征,量子力学及其他任务的特征提供多功能且容易适用的工具。作为我们方法的应用,我们讨论了不确定因果关系的存在如何自然出现在高阶量子转换中,并为映射的特征提供了一个简单的策略,这些特征必须以“完全”的意义保存属性,即仅在不详尽的部分进行输入空间的各个部分。
摘要。本文以浮游生物为例,比较了两种在水环境中检测和识别微物体的方法的有效性,这些方法使用了神经网络和各种技术,并使用不同的编程语言开发。首先,研究并应用了传统的检测方法,该方法基于 Gabor 和多层感知器特征的提取,以 MATrixLABoratory (MATLAB) 语言实现。其次,使用 YOLOv5(“You only look once” 的缩写)作为单级神经网络,以 Python 语言实现。介绍了这些方法在浮游生物检测中的工作结果。计算准确度和完整性指标以确定两种方法中的最佳方法。使用检测方法后,获得了带有识别结果的图像,以编程方式计算的性能指标。研究了使用短视频图像进行实时识别的方法应用的有效性。最后,指出 YOLOv5 模型在检测海洋物体(尤其是浮游生物)的任务中表现出了明显优于传统方法的优势。其准确率高出 30%;物体检测的完整性提高了27%。
摘要当前的挑战是通过开发信息技术来确保视障人士对艺术对象的可访问性,从而将2D图像转换为3D模型并在盲文中为其生成描述。盲人的大脑能够将触觉信息转换为视觉图像,因此使用3D建模和3D打印技术创建的触觉绘画将使盲人用指尖“看到”艺术杰作。The variable height of volumetric elements when creating tactile graphics for blind people can effectively and intuitively transmit various types of information, so when developing information technology for ensuring accessibility to art objects for the visually impaired persons, an important and urgent task is to recognize a 2D image and its 3D modeling (building up the relief to obtain an image of a three- dimensional object, as well as a mathematical model that describes the structure of the object, the location of它在空间上的观点,以及对象表面的数学描述)。对2D图像识别的已知方法和工具的分析及其3D建模表明,目前,3D模型中渲染艺术对象(绘画)的方法和工具当前不发达。提出的信息技术,用于确保视力障碍者自动化的艺术对象的可访问性(为了简化实现),将2D图片转换为其3D模型,准备在3D打印机上打印,还可以在Braille中生成图片的描述,准备在Typhlloprinter上打印。
手稿版本:作者接受的手稿包装中呈现的版本是作者接受的手稿,可能与已发布的版本或记录的版本有所不同。持续的包裹URL:http://wrap.warwick.ac.uk/184584如何引用:有关最新的书目引用信息,请参阅发布版本。如果已知已发布的版本,则链接到上面的存储库项目页面将包含有关访问它的详细信息。版权所有和重复使用:沃里克研究档案门户(WARAP)使沃里克大学的研究人员在以下条件下可用开放访问权限。版权所有©以及此处介绍的论文版本的所有道德权利属于单个作者和/或其他版权所有者。在合理且可行的范围内,已在可用的情况下检查了包装中可用的材料是否有资格。未经事先许可或收费,可以将完整项目的副本用于个人研究或研究,教育或非营利目的。前提是作者,标题和完整的书目细节被认为是针对原始元数据页面提供的超链接和/或URL,并且内容不会以任何方式更改。发布者的声明:请参阅“存储库”页面,发布者的语句部分,以获取更多信息。有关更多信息,请通过以下网络与WARP团队联系:wrap@warwick.ac.uk。
摘要:提出了通过涡流方法测量结果识别平面对象的材料属性的新方法。这些方法基于最新的替代策略和高级优化技术,这些技术可以提高效率并减少问题解决方案的资源消耗,并平衡计算复杂性与结果的准确性。用于全局替代优化的高性能元模型基于深度有意义的完全连接的神经网络,它是积累有关对象的APRIORII信息的附加功能。由测试过程的“精确”电动力学模型确定的多维响应表面的近似值可以通过根据计算机设计的计算机设计来确保,该计算是均质实验的计算机设计,其重量较低的对称中心差异。提供了用于完整和缩小的尺寸搜索空间进行的数值实验的结果,可以通过使用主要组件方法来获得线性转换获得。这些方法的验证证明了它们的良好精度和计算性能。
许多技术和系统,包括自动驾驶汽车,监视系统和机器人应用,都依赖能力来准确检测行人以确保其安全性。随着对实时对象检测的需求不断上升,许多研究人员致力于开发有效且值得信赖的算法以供行人识别。通过将学习复杂性意识到的级联反应与增强的级联集成,您只看一次(YOLO)算法,该论文提供了一个实时系统,用于识别项目和行人。使用Karlsruhe技术研究所和丰田技术学院(KITTI)行人数据集评估了所提出的方法的性能。优先考虑速度和准确性,增强的Yolo算法的表现优于其基线。在Kitti行人数据集上,建议的技术在现实世界中的有效性强调了其有效性。此外,复杂性感知的学习级联反应为简化的检测模型做出了贡献,而不会损害性能。当应用于需要对象和个人实时识别的方案时,提出的方法会始终提供有希望的结果。
模仿自然解决技术问题的进化算法、将植物变成活数据档案的合成 DNA 以及在生物体内使用自主机器只是几个例子,表明生命与技术之间的界限在 21 世纪初已经变得模糊不清。虽然生物体的技术化历史悠久,但如今在生物信息学、分子生物学和其他领域可以观察到技术日益生物化。这一发展的特点是学科和方法论界限的跨越。越来越难以说出生物学与技术、科学与经济、代表与干预之间的界限在哪里。事实上,生物体和技术不再被认为是本体论上不同的实体。相反,生物和技术系统似乎正变得越来越交织在一起,并在这一过程中交换属性。在这种背景下,自然本身越来越成为技术设计和经济投资的构建工具和资源。
印度在尽可能最大程度上遵守联合国和机构间空间碎片协调委员会 (IADC) 的空间碎片减缓准则,同时努力更好地遵守准则。为遏制空间碎片的增长而采取的措施包括发射前避免碰撞以确定运载火箭的安全升空、对运行中的航天器进行空间物体接近度分析、在需要时执行避免碰撞机动、钝化火箭级、在任务结束后处置卫星和运载火箭上级。2023 年,GSAT-12 重新进入超同步轨道并在退役前钝化,完全符合联合国和 IADC 建议的地球静止轨道物体任务后处置准则。一项极具挑战性的实验成功完成,该实验旨在使 Meghatropiques-1 脱离轨道并确保其在太平洋无人区上空受控重返大气层。印度发射的所有轨道火箭级在任务结束后均钝化。 PSLV-C56 的上级被脱离轨道至 300 公里高度,以将其发射后的轨道寿命限制在不到一个月的范围内。采取了具体举措,以提高新进入太空领域的人的认识,并指导他们实施空间碎片减缓措施。