在Marwan Hamze博士的监督下,该项目是在东京科学大学的吉田教授实验室的国际四个月实习的一部分。主要目的是为加强机器人手臂控制学习的应用的应用做出贡献。我的工作包括在模拟和真实环境中为机器人组开发和实施控制算法。强化学习使避免复杂的运动学模型成为可能,从而为机器人提供通过与环境直接互动来优化其行为的能力。我将精力集中在优化XARM6机器人手臂控制上,并从科学文献中适应方法。我在模拟中首先测试了这些算法,然后将它们应用于真实环境以评估其稳健性。我的目标是获得加强对人形机器人控制的技能,以控制川崎的Kaleido机器人,尺寸为1.80 m,重80 kg。这个项目使我能够增强机器人技术和人工智能方面的技术技能,同时促进该扩展领域应用的研究。
摘要。已经创建了多个软件框架,以帮助开发人员建模机器人应用程序。这些框架使用适合控制硬件组件(例如传感器和执行器)的低级编程结构,但在抽象复杂性方面受到限制。相反,代理编程语言支持使用更高水平的抽象来实现代理,但是这些语言主要仅限于软件代理的开发。在本文中,我们概述了将代理编程语言与机器人开发框架集成的体系结构和编程构造,以便使用高级抽象来编程自主机器人。由此产生的编程环境旨在使用自主认知剂的抽象来促进机器人对综合行为的建模。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
On-On-On-On-Orbit服务(OO)包括一系列服务类型,以增加卫星的寿命及其性能,并确保它不会助长太空碎片的日益增长的问题。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。 在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。 这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。
什么是AV1机器人,为什么要使用它们?AV1是一个远程敏感机器人,可确保没有学生错过课程。它不仅仅是远程学习,这是亲自在那里的下一个最好的事情。合作学院信托基金打算试行使用AV1机器人,以允许无法上学的长期医疗需求的学生,可以进入教室
可穿戴机器人上肢矫形器 (ULO) 是辅助或增强用户上肢功能的有前途的工具。虽然这些设备的功能不断增加,但对用户控制可用自由度的意图的稳健和可靠检测仍然是一项重大挑战,也是接受的障碍。作为设备和用户之间的信息接口,意图检测策略 (IDS) 对整个设备的可用性具有至关重要的影响。然而,这方面及其对设备可用性的影响很少根据 ULO 的使用环境进行评估。进行了范围界定文献综述,以确定已通过人类参与者评估的应用于 ULO 的非侵入式 IDS,特别关注与功能和可用性相关的评估方法和发现及其在日常生活中特定使用环境的适用性。共确定了 93 项研究,描述了 29 种不同的 IDS,并根据四级分类方案进行了总结和分类。与所述 IDS 相关的主要用户输入信号是肌电图 (35.6%),其次是手动触发器,例如按钮、触摸屏或操纵杆 (16.7%),以及上肢节段的残余运动产生的等长力 (15.1%)。我们确定并讨论了 IDS 在特定使用环境中的优缺点,并强调了在选择最佳 IDS 时性能和复杂性之间的权衡。通过调查评估实践来研究 IDS 的可用性,纳入的研究表明,主要评估了与有效性或效率相关的客观和定量的可用性属性。此外,它强调了缺乏系统的方法来确定 IDS 的可用性是否足够高以适合用于日常生活应用。这项工作强调了针对用户和应用程序选择和评估用于 ULO 的非侵入式 IDS 的重要性。对于该领域的技术开发人员,它进一步提供了有关IDS的选择过程以及相应评估协议的设计的建议。
•满足所有学习者的需求,包括需要额外支持或有特殊需求的学习者的需求。SHS,SHT和STEM课程包括通过技术和其他措施将教学和学习材料调整为可访问的格式,以满足残疾学习者的需求,包括残疾学习者。•结合策略和措施,例如差异化和适应性教学法,以确保为所有学习者提供公平的资源和机会。•挑战传统的性别,文化或社会刻板印象,并鼓励所有学习者发挥真正的潜力。•为学校中有才华和才华横溢的学习者提供需求。
随着全球人口的增长和对粮食的需求不断增加,农业生产面临着巨大的压力。与此同时,气候变化和资源限制加剧了这些挑战,进一步凸显了对可持续农业实践的需求。为了解决这些复杂的问题,植物科学领域正在经历一场技术革命。人工智能 (AI)、计算机视觉和机器人技术的快速发展正在重新定义植物的研究方式和农业实践的管理方式。从高通量表型到精准农业和实时监测,这些技术正在显著提高效率和准确性,为更具弹性和可持续性的农业系统奠定基础。本研究主题汇集了开创性的研究,以展示人工智能如何推动植物科学的发展并为现代农业提供创新解决方案。