1969 年,人们发现一种以前未知功能的牛红细胞蛋白具有催化超氧化物自由基歧化活性 (1-3)。这种酶,即超氧化物歧化酶,是一种金属蛋白,每分子含有 2 (1.8-2.0) 个铜原子和 2 (1.7-1.9) 个锌原子,分子量为 33,000,由两个大小相同的亚基组成 (4, 5)。从其他真核生物中纯化的铜锌歧化酶在分子量、亚基结构、氨基酸组成、铜锌含量以及对纯化所用的氯仿-乙醇混合物的稳定性方面与牛红细胞歧化酶相似 (2, 3)。细菌来源的酶代表一类独特的超氧化物歧化酶,其每个分子含有 1-2 个锰原子作为金属辅因子,对氯仿-乙醇处理不稳定,其氨基酸组成与铜锌歧化酶明显不同(2、3、6-8)。细菌酶的分子量约为 40,000,每个酶含有两个分子量为 20,000 的亚基。最近又分离出两种超氧化物歧化酶,其稳定性、纯化特性和氨基酸组成与细菌锰歧化酶相似。一种来自鸡肝线粒体(8)的超氧化物歧化酶每个分子含有 2.3 个锰原子,虽然它是四聚体,但其亚基分子量与细菌含锰酶相同。另一种是含有铁(每个分子约 1 个原子)而不是锰的,已从大肠杆菌中分离出来(9),是一种二聚体,其亚基大小相同(分子量 19,000)。已在各种需氧、厌氧和耐氧厌氧微生物中测量了超氧化物歧化酶活性水平(10)。从观察到的相关性来看,
我们的目标是解决Apis Labiosa和Apis Dorsata亚种之间的系统发育关系A. d。 Dorsata,A。D。 Binghami和A. d。 Breviligula,几位作者提出了最后两个物种。我们使用用最大似然方法分析的线粒体COX1和COX2基因序列对巨型蜜蜂进行了系统发育分析。在广义上,我们在多萨塔(A. dorsata)内获得了四个进化枝的支持:上面提到的三个亚种或物种,以及来自南部的第四个谱系。但是,我们的分析并未解决四个谱系之间的系统发育关系。在印度存在两个遗传区分开的“ A. dorsata”群体的存在与存在两个空腔巢蜜蜂的存在,即A. Cerana Cerana和A. c。印度(分别是黑山蜜蜂和黄色平原蜜蜂)。这表明过去的气候或地质事件可能暂时将印度人口与亚洲大陆的人群暂时隔离,从而导致分歧,并可能将印度巨人和空腔巢蜜蜂的物种形成,然后是东亚形式对印度的重新殖民化。对这些独特的谱系的认识对于保护计划很重要,因此可以考虑它们的各个分布,生态和迁移模式,因此可以维持它们所代表的遗传多样性。
几种抑制 70S 核糖体蛋白质合成的抗生素,包括克林霉素、吡利霉素、4'-戊基-N-去甲基克林霉素、四种四环素、氯霉素、甲砜霉素和红霉素,在培养中对恶性疟原虫具有抗疟作用,这种作用受药物暴露时间和氧张力的影响很大。在 96 小时的孵育中,效力在前 48 小时内增加高达 106 倍,在 15% 02 与 1% 02 中增加高达 104 倍。两种氨基糖苷类药物,卡那霉素和妥布霉素,没有抗疟活性。抑制核酸合成的利福平和萘啶酸与 70S 抑制剂不同。线粒体抑制剂 Janus Green、罗丹明 123、抗霉素 Al 和 8-甲基氨基-8-去甲基核黄素的活性受暴露时间和氧张力的影响。含喹啉的抗疟药、离子载体和其他抗疟药受暴露时间的影响较小,但不受氧张力的影响。这些数据可以用以下假设来最好地解释:抗疟 70S 核糖体特异性蛋白质合成抑制剂通过作用于线粒体对寄生虫产生毒性。
结果和讨论:我们发现线粒体基因组的长度长度为401,301 bp,其GC含量为45.15%。它由53个基因组成,包括32个蛋白质编码基因,3个核糖体RNA基因和18个转移RNA基因。在线粒体基因组中总共存在146个散射重复序列,8个串联重复序列和124个简单的序列重复序列。对所有蛋白质编码基因的彻底检查揭示了485个RNA编辑和9579个密码子的实例。此外,在角膜软骨基因组和叶绿体基因组中鉴定了57个同源片段,占线粒体基因组的约4.04%的叶绿体基因组。此外,这是一种基于来自属于四个Fabaceae亚家族的33个物种的线粒体基因组数据,而其他家族的两个物种验证了莲花的进化关系。这些发现对理解角膜乳杆菌基因组的组织和演变以及遗传标记物的识别具有重要意义。他们还提供了与制定豆类分子育种和进化分类策略有关的有价值的观点。
通过多组学方法,这种全面的综述探讨了线粒体基因缺陷与胰腺癌发病机理之间的复杂相互作用。通过从基因组,转录组,蛋白质组学和代谢组学研究中合并数据,我们解剖了线粒体遗传变异决定癌症进展的机制。重点已放在这些基因在改变细胞代谢过程,信号转导途径和免疫系统相互作用中的作用上。我们进一步探讨了这些发现如何重新治疗干预措施,并特别关注精确医学应用。这种分析不仅填补了有关胰腺癌线粒体异常的关键知识差距,而且还为未来研究个性化治疗方案的研究铺平了道路。这个发现强调了线粒体遗传学和肿瘤免疫学之间的关键联系,为有针对性的癌症治疗策略开辟了新的途径。
自身免疫性疾病的特征是免疫反应的巨大改变,但发病机理仍然具有复杂性,尚未完全阐明。调节细胞分化,成熟和死亡的多种机制至关重要,其中与线粒体相关的细胞细胞器功能中,最近引起了人们的注意。线粒体作为真核生物中高度保存的细胞器,在对化学能转化中基本功能的外源性和内源性应激的细胞反应中具有至关重要的作用。在这篇综述中,我们的目的是总结有关线粒体在先天免疫反应中的功能及其在自身免疫性疾病中的异常(例如类风湿关节炎,全身性狼疮等)的功能,主要集中在其指导上对细胞代理和其机器的指导响应,这主要集中在其指导上,这主要是对电脑的反应。更重要的是,我们总结了在自身免疫性疾病的情况下在线粒体调节中发现的潜在治疗靶标的现状,并希望阐明未来的研究。
结直肠癌(CRC)是近年来全球发病率和死亡率最高的恶性肿瘤之一,主要起源于结肠或直肠的粘膜组织,并有可能快速发展为侵袭性癌症。它的发病机理很复杂,涉及许多因素,包括遗传背景,生活方式和饮食习惯。早期检测和治疗是提高CRC患者存活率的关键。然而,普遍的问题是患者可以严重抵抗治疗,这大大增加了治疗的复杂性和挑战。因此,揭开和克服CRC的抵抗力已成为研究的重点。线粒体(细胞的能量中心)在细胞代谢,能量供应和凋亡过程中起着至关重要的作用。在CRC中,线粒体功能障碍不仅会损害正常的细胞功能,还会促进肿瘤耐药性。因此,对线粒体功能障碍与CRC发育机制之间的关系有深入的了解,以及促进对化学疗法药物抗药性的机制,对于靶向疗法的发展,增强药物效率以及改善患者寿命的治疗效果和质量至关重要。
作为能量和代谢的重要细胞器,线粒体动态状态的变化会影响细胞代谢的稳态。线粒体动力学包括线粒体融合和线粒体填充。前者由Mitofusin-1(MFN1),Mitofusin-2(MFN2)和光学萎缩1(OPA1)协调,后者是由Dynamin相关蛋白1(DRP1),Mitochoncondrial-Filemssion 1(Fis1)(FIS1)和Mitochondrialialialialialialialialialialionsion介导的。线粒体融合和填充通常处于动态平衡状态,此平衡对于保留适当的线粒体形态,功能和分布很重要。糖尿病疾病会导致线粒体动力学的障碍,这会导致新陈代谢的一系列异常,包括生物能源生产降低,活性氧(ROS)的过度产生,有缺陷的有缺陷的有线线虫和凋亡,最终与多意型核酸质体的多个慢性复杂性紧密相连。多项研究表明,糖尿病并发症的发生率与线粒体的增加有关,例如,糖尿病心肌细胞中的线粒体纤维症和线粒体融合受损过多,并且可以通过糖尿病的发展引起的心脏功能障碍。因此,靶向线粒体动力学的恢复将是II型糖尿病(T2D)及其并发症的有前途的治疗靶标。在本综述中讨论了线粒体动力学的分子方法,在T2D及其并发症的背景下的损害,以及针对线粒体动力学的药理学方法,并承诺对T2D治疗及其合并症治疗的收益。
本研究主题为“肥胖,2型糖尿病和线粒体之间的联系”旨在突出联系线粒体,肥胖和糖尿病的关系的功能作用,包括涉及的关键机制以及对治疗干预的潜在影响。肥胖,2型糖尿病(T2D)和线粒体之间的关系是多方面且复杂的;了解这种关系可以为T2D和肥胖的预防和管理提供宝贵的见解。肥胖和T2D是全球主要的健康挑战,对个人和医疗保健系统产生了重大影响。在过去的几十年中,这两种情况的流行率一直在稳步增长(1)。连接这两种条件的基本机制,尤其是线粒体的作用,引起了人们的关注(2-4)。线粒体是通过氧化磷酸化负责细胞能量产生的重要细胞器。肥胖症与线粒体功能障碍有关,包括线粒体生物发生受损,氧化能力降低和氧化应激增加。这些改变会导致不足的能量利用,这导致肥胖症中观察到的代谢异常。线粒体功能障碍会对胰岛素信号通路产生负面影响。线粒体氧化能力受损会导致活性氧(ROS)的水平增加,并激活与压力相关的途径的激活,所有这些途径都干扰了胰岛素作用。因此,周围组织中胰岛素生物学反应降低的条件(即胰岛素抵抗)发展(5-7)。Rautenberg等。优雅地描述了线粒体的正常功能和结构,并突出了一些关键研究,这些研究表明了T2D和肥胖症志愿者的骨骼肌中线粒体异常。此外,他们解释了
阿尔茨海默氏病(AD)是最常见的神经退行性疾病,约占全球痴呆症病例的70%。患者逐渐表现出认知能力下降,例如记忆力丧失,失语和人格和行为变化。研究表明,线粒体功能障碍在AD的发作和进展中起关键作用。线粒体功能障碍主要导致氧化应激增加,线粒体动力学失衡,线粒体受损和线粒体基因组异常。这些线粒体异常与淀粉样蛋白β和Tau蛋白质病理学密切相关,共同加速了神经退行性过程。本综述总结了线粒体在AD开发中的作用,最新的研究进展,并探讨了线粒体靶向AD的治疗策略的潜力。靶向与线粒体相关的途径可能会显着改善未来AD患者的生活质量。
