摘要 - 该研究旨在实施能够自主检测绵羊目标并在2D占用图上代表它们的系统,其最终目标是促进在UXV平台上自主牧羊。本文详细介绍了Blackboard System的开发,Blackboard System是一种用于自动目标检测和映射的软件解决方案。使用Python和C编程语言,Blackboard系统将单眼深度感测与自主目标检测,以产生全面的深度和目标图。这些地图是合并的,以产生从高架相机的角度捕获的操作区域的详细的2D鸟视图。黑板系统的独特功能是其模块化框架,它允许无缝更新或更换其深度传感和目标检测模块。
结果:在将肥胖症患者与健康对照组进行比较时,α多样性在眼表面菌群的丰富度或均匀度没有明显差异(香农指数,p = 0.1003)。但是,β多样性突出了这两组的微生物群组成中的显着方差(Anosim,p = 0.005)。lefse分析表明,肥胖症患者的delftia,cutibacterium,cutibacterium,cutibacterium,culobacterium,caulobacteraceae,caulobacteraceae未分类,comamonas和卟啉症显着增加(p <0.05)。使用PICRUST2的预测分析强调了肥胖症患者的某些代谢途径的显着增强,特别是通过细胞色素P450(CYP450),脂质代谢和脂质代谢的代谢,尤其是异种疗法,脂质代谢和类似的受体信号途径(NOD) - 样型(NOD) - 样型(NOD)。
我们提出了来自单眼RGB视频的动态3D头部重建的单眼神经参数头模型(Mono NPHM)。到此为止,我们提出了一个潜在的空间空间,该空间在神经参数模型的顶部参数化纹理场。我们限制了预测的颜色阀与基础几何形状相关,以便RGB的梯度有效地影响反向渲染过程中的潜在几何代码。为了提高表达空间的代表能力,我们使用超二维增强了向后变形场,从而在拓扑具有挑战性的表达式中显示出颜色和几何表示。使用Mono NPHM作为先验,我们使用基于符号距离字段的体积渲染来处理3D头重建的任务。通过nu毫无反转,我们使用面部锚点构成了具有里程碑意义的损失,这些损失与我们的规范几何表示紧密相关。为了评估单眼RGB视频的动态面部重建任务,我们在休闲条件下记录了20个具有挑战性的Kinect序列。单nphm超过 -
实现统一的单眼3D对象检测,包括室内和室外场景,在机器人导航等应用中非常重要。然而,涉及各种数据方案来训练模型引起了挑战,因为它们的特性显着不同,例如,二 - 几何特性和异质域分离。为了应对这些挑战,我们根据鸟类的视图(BEV)检测范式建立了一个检测器,在该检测范式中,当采用多个数据方案以训练检测器时,明确的特征投影有利于对几何学学习模棱两可。然后,我们将经典的BEV检测体系结构分为两个阶段,并提出了不均匀的BEV网格设计,以处理由上述Challenges引起的收敛不稳定。此外,我们开发了稀疏的BEV功能策略,以降低计算成本和处理异质域的统一操作方法。将这些技术结合起来,得出了一个统一的检测器Unimode,它超过了富有挑战性的Omni3D数据集(一个大规模的数据集(一个室内和室外场景))的先前最先进的AP 3D,揭示了Bev bev tor tor tor tor tor tor tor unified 3D对象的第一个成功概括。
脊椎动物的眼睛不断面临着来自水生或空气传播病原体的众多挑战。作为至关重要的第一道防线,眼粘膜 (OM) 保护鸟类和哺乳动物等脊椎动物的视觉器官免受外界威胁。然而,我们对硬骨鱼等早期脊椎动物眼粘膜免疫的了解仍然有限,特别是关于它们对细菌感染的抵抗力。为了深入了解 OM 在硬骨鱼抗菌免疫中的关键作用,我们利用虹鳟鱼 (Oncorhynchus mykiss) 中的柱状黄杆菌建立了细菌感染模型。此处 qPCR 和免疫荧光结果表明柱状黄杆菌可以侵入鳟鱼 OM,表明 OM 可能是细菌的主要目标和屏障。此外,qPCR 证实了鳟鱼 OM 中免疫相关基因( il-6 、 il-8 、 il-11 、 cxcl10 、 nod1 、 il1-b 、 igm 、 igt 等)在 F. columnare 感染后上调,并通过 RNA-seq 进一步证实了这一点。转录组分析的结果表明,细菌感染会触发强烈的免疫反应,包括先天性和适应性免疫相关信号通路,如 Toll 样、NOD 样和 C 型凝集素受体信号通路和 IgA 产生的免疫网络,这强调了 OM 在细菌感染中的免疫作用。有趣的是,感染后观察到与视觉功能相关的基因表达显着降低,表明细菌感染可能影响眼部功能。总的来说,我们的研究结果首次揭示了硬骨鱼类眼部粘膜对细菌感染的强大粘膜免疫反应,为未来研究早期脊椎动物眼部粘膜免疫机制和功能提供了宝贵的见解。
单眼3D检测(M3D)的目的是从单视图像中进行精确的3D观察定位,该图像通常涉及3D检测框的劳动密集型注释。最近已经研究了弱监督的M3D通过利用许多存在的2D注释来遵循3D注释过程,但通常需要额外的培训数据,例如LiDAR Point Clouds或多视图图像,这些数据会大大降低其在各种应用中的适用性和可用性。我们提出了SKD-WM3D,这是一个弱监督的单眼3D检测框架,利用深度插入以实现M3D,并具有单一视图图像,而无需任何3D注释或其他培训数据。SKD-WM3D中的一个关键设计是一个自我知识的蒸馏框架,它通过融合深度信息并有效地减轻单核场景中固有的深度模棱两可,从而将图像特征转换为3D类似的表示形式,而无需计算上的计算层面。此外,我们设计了不确定性感知的分离损失和梯度定位的转移调制策略,分别促进了知识获取和知识转移。广泛的实验表明,SKD-WM3D明显超过了最新的实验,甚至与许多完全监督的方法相当。
我们提出了intincavatar,这是一种新的方法,是一种从单眼视频中照亮的,包括几何形状,反照率,材料和环境的内在特性。基于人类的神经渲染的最新进展已使来自单眼视频的穿着人类的高质量几何形状和外观重建。然而,这些方法烘烤了内在特性,例如反照率,材料和环境照明成一个单一的纠缠神经表示。另一方面,只有少数作品可以解决估计单眼视频中穿衣人类的几何形状和分离的外观特性的问题。,由于通过学习的MLP对次要阴影效应的近似值,他们通常会获得有限的质量和分离。在这项工作中,我们建议通过蒙特卡罗射线跟踪明确地对次级阴影效应进行建模。我们将衣服的人体的渲染过程建模为体积散射过程,并将射线跟踪与人体的作用相结合。我们的方法可以从单眼视频中恢复服装人类的高质量地理,反照率,材料和照明特性,而无需使用地面真相材料进行监督的预训练。fur-hoverore,因为我们明确地对体积散射过程和射线追踪进行了建模,所以我们的模型自然而然地形成了一般 -
广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
与从 LiDAR 数据和多视图影像重建相比,倾斜影像重建是大规模城市建模的重要研究问题和经济解决方案。然而,建筑物足迹和立面的部分不可见性、严重的阴影效应以及大范围区域内建筑物高度的极端变化等若干挑战将现有的基于单目影像的建筑物重建研究限制在某些应用场景中,即从近地面影像建模简单的低层建筑物。在本研究中,我们提出了一种新颖的单目遥感影像 3D 建筑物重建方法,解决了上述困难,从而为更复杂的场景提供了一种有吸引力的解决方案。我们设计了一个多任务建筑物重建网络 MTBR-Net,通过四个语义相关任务和三个偏移相关任务来学习倾斜影像的几何属性、3D 建筑物模型的关键组件及其关系。网络输出通过基于先验知识的 3D 模型优化方法进一步集成,以生成最终的 3D 建筑模型。在公共 3D 重建数据集和新发布的数据集上的结果表明,与目前最先进的方法相比,我们的方法将高度估计性能提高了 40% 以上,将分割 F1 分数提高了 2% - 4%。