基因疗法一直是过去十年中研究最多的主题之一。现在已成为现代医学的革命性治疗工具。基因治疗是宿主细胞中疾病过程中涉及的有缺陷基因的改变。它通过改良的病毒或非病毒载体提供治疗性遗传信息。眼基因疗法尤其是在治疗遗传性视网膜疾病方面的进展,因为眼睛是基因治疗发育的有利器官。眼睛作为基因疗法的靶标的优势归因于其易于可及性和血液屏障。正在进行的几项临床试验正在研究其他眼部疾病的各种基因疗法,包括新血管相关的黄斑变性,色素性视网膜炎(RP),Usher综合征,青光眼等。然而,存在诸如眼部炎症和体液反应,病毒载体感染和插入诱变之类的挑战。这些局限性取决于几个因素;无论使用病毒载体还是非病毒载体,使用了病毒载体,玻璃体下,玻璃体内或胸膜上的给药途径,以及向量的剂量和目标组织。这些并发症可能导致因眼内炎症引起的治疗衰竭和视力丧失。本综述旨在总结有关眼基因疗法的现有知识以及我们面临的相关局限性,特别关注了一些正在进行的临床试验。
营养与健康之间的相互作用具有两千年半的学者。在此帐户中,在旧约中,丹尼尔(Daniel)和他的同事在国王的豪华票价上选择了蔬菜和水,因此注意到了改善的健康状况。1快进到1747年,我们遇到了詹姆斯·林德(James Lind)在HMS索尔兹伯里(HMS Salisbury)上的先驱实验 - 通常被认为是第一次受控的临床试验 - 发现柑橘类水果的治疗方法是针对Scurvy的。2这些初步研究为不断发展的营养科学领域树立了基础,这是由整个历史上社会的饮食习惯不断变化的。正如Virginia Woolf巧妙地指出的那样,如果没有很好的用餐,就无法很好地思考,爱好,睡得很好。3这种见解捕捉了我们的饮食选择与整体福祉之间的深刻联系,甚至扩展到了我们的视觉能力。
摘要:丝裂原活化蛋白激酶 (MAPK) 通路是普遍存在的细胞信号转导通路,调节生命的各个方面,在疾病中经常发生改变。一旦通过磷酸化激活,这些 MAPK 反过来磷酸化并激活存在于细胞质或细胞核中的转录因子,导致靶基因的表达,并因此引发各种生物反应。这项工作的目的是提供全面的综述,重点关注 MAPK 信号通路在眼部病理生理学中的作用以及影响这些通路治疗眼部疾病的潜力。我们总结了目前已鉴定的 MAPK 靶向化合物在眼部疾病(如黄斑变性、白内障、青光眼和角膜病变)方面的知识,也总结了在细胞分化、增殖或迁移有缺陷的罕见眼部疾病方面的知识。还讨论了潜在的治疗干预措施。此外,我们还讨论了克服某些 MAPK 抑制剂报告的眼部毒性的挑战。
在基因组工程工具中,基于成簇规律间隔短回文重复序列 (CRISPR) 的方法因其稳健性、精确性和易用性而被广泛用于转化研究。当使用病毒载体(如腺相关病毒)将 CRISPR 递送至患病组织时,可以有效地在体内实现直接基因组编辑,以治疗不同的眼科疾病。尽管 CRISPR 已被积极探索作为治疗遗传性视网膜疾病的策略,并且最近启动了首次人体试验,但它在眼部血管生成等复杂、多因素疾病中的应用相对有限。目前,新生血管性视网膜疾病(如早产儿视网膜病变、增生性糖尿病视网膜病变和新生血管性年龄相关性黄斑变性)共同构成了发达国家失明的大多数,通过频繁且昂贵的抗血管内皮生长因子 (anti-VEGF) 药物进行治疗,这些药物的疗效短暂且给患者带来负担。相比之下,CRISPR 技术有可能永久抑制血管生成,同时还具有靶向细胞内信号或调节元件、细胞特异性传递和多路复用以同时破坏不同促血管生成因子的额外优势。然而,永久抑制生理途径的前景、基因编辑效率的不可预测性以及对脱靶效应的担忧限制了人们对这些方法的热情。在这里,我们回顾了基因治疗的发展和采用 CRISPR 平台抑制视网膜血管生成的进展。我们讨论了不同的 Cas9 直系同源物、传递策略和不同的基因组靶点,包括 VEGF、VEGF 受体和 HIF-1 α,以及基因组编辑与传统基因疗法相比在多因素疾病过程和单基因遗传性视网膜疾病方面的优缺点。最后,我们描述了必须克服的障碍,以便有效采用基于 CRISPR 的策略来管理眼部血管生成。
目的:本研究的目的是研究干眼症患者的眼部微生物组,并确定其可能的健康和诊断意义的眼部微生物组的特征。方法:从两只眼睛中收集了来自91个个体(61个干眼,30个健康)的样品,并用于培养依赖性和与文化无关的分析。样品,或在广泛的琼脂类型上接种,并在广泛的条件下生长以最大化恢复。通过对16S rDNA和RPOB基因的部分测序鉴定分离株,并测试了抗生素易感性。 ,我们在下一代测序数据上应用了L2规范化的逻辑回归模型,以研究严重的干眼症与眼部微生物组之间的任何潜在关联。 结果:依赖文化的分析显示,健康个体中菌落形成单位的数量最多。 从样品中回收的大多数分离株是小杆菌,微球菌,葡萄球菌Epi Dermidis和Cutibacterium acnes。 培养独立的分析显示,24个类别,其中静脉细菌,FIR粉和蛋白质细菌是最丰富的。 被检测到超过405属,其中Corynebacterium是最主要的,其次是葡萄球菌和cutibacterium。 L2调查的逻辑回归模型表明Blautia和Corynebacterium sp。 可能与严重的DED有关。 结论:我们的研究表明,眼微生物组在严重的DED患者中具有特征。分离株,并测试了抗生素易感性。,我们在下一代测序数据上应用了L2规范化的逻辑回归模型,以研究严重的干眼症与眼部微生物组之间的任何潜在关联。结果:依赖文化的分析显示,健康个体中菌落形成单位的数量最多。从样品中回收的大多数分离株是小杆菌,微球菌,葡萄球菌Epi Dermidis和Cutibacterium acnes。培养独立的分析显示,24个类别,其中静脉细菌,FIR粉和蛋白质细菌是最丰富的。被检测到超过405属,其中Corynebacterium是最主要的,其次是葡萄球菌和cutibacterium。L2调查的逻辑回归模型表明Blautia和Corynebacterium sp。可能与严重的DED有关。结论:我们的研究表明,眼微生物组在严重的DED患者中具有特征。某些Corynebacterium物种和Blautia对于将来的研究特别感兴趣。
我们开发 RMA 方法的动机是基于一个实际例子,即当前需要从文献中快速获得证据共识。羟氯喹自 1950 年代 [ 6 ] 开始问世,用于治疗疟疾、红斑狼疮和类风湿性关节炎。最近,羟氯喹被强调为一种支持冠状病毒病 (COVID-19) 患者的潜在干预措施。尽管羟氯喹在每种临床条件下的疗效结果不同,但不良事件往往是一致的。在本研究中,我们使用 RMA 来回答有关羟氯喹的特定临床问题以及眼部毒性作为副作用的程度。这是一个重要的临床问题;然而,我们无法找到合适的结果聚合方法。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
注意:请注意,本文件可能不是作品的记录版本(即已发布的版本)。作者手稿版本(提交同行评审或同行评审后接受出版)可以通过缺少出版商品牌和/或排版外观来识别。如果有任何疑问,请参考已发布的来源。