本章介绍了振动系统的非线性正常模式(NNM),作为相位空间的不变流形,以及它们用于降低非线性结构的模型顺序。nnms被定义为线性正常模式的延续,通过将幅度的主体特征空间的子集实施相切。保守和阻尼动力学以及NNM是时间依赖的强制系统。使用用于不变歧管的参数化方法的系统过程是为其计算而设计的,直接从物理空间运行,并直至任意扩展顺序。在学术示例中的应用显示,以突出该方法处理硬化/软化行为,折叠式歧管的存在和超谐共振的能力。在每种情况下,都会得出具有最小维度和出色精度的降低模型。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 (英文) ................................................................................................................................................................ 1 摘要 (法文) ................................................................................................................................................................ 3 概述 ........................................................................................................................................................................ 5 第 1 章:参考书目 ...................................................................................................................................... 9 1.1. 可再生能源和储能资源的重要性 ...................................................................................................... 11 1.2 为什么选择液流电池 ............................................................................................................................. 18 1.2.1 铁铬液流电池 ............................................................................................................................. 20 1.2.2 溴/多硫化物液流电池 ............................................................................................................. 20 1.2.3 钒/溴 2 液流电池 ............................................................................................................. 21 1.2.4 锌/溴液流电池(混合液流电池) ............................................................................................. 21 1.2.5 锌/铈非水系液流电池(非水系) ................................................ 22 1.2.6 钒/铈氧化还原液流电池。(非水系) ...................................................................... 22 1.3. 为什么所有钒氧化还原液流 ...................................................................................................................... 23 1.4 与钒电解液相关的挑战 ...................................................................................................................... 24 1.4.1 膜 .................................................................................................................................................... 25 1.4.2 电解质 .................................................................................................................................................... 26 1.4.3 电极 .................................................................................................................................................... 27 1.4.3.1 热处理 ............................................................................................................................................. 29 1.4.3.2 化学处理 ............................................................................................................................................. 31 1.4.3.3 金属掺杂 ............................................................................................................................................... 33 1.4.3.4 电化学处理 ...................................................................................................................... 36 1.5 结论 .............................................................................................................................................. 38 第 2 章 通过使用 K 2 Cr 2 O 7 酸性溶液进行化学处理来增强全钒氧化还原液流电池(VRFB)用商业石墨毡的电化学活性 . ............................................................................................................................. 41 2.1 简介 ...................................................................................................................................................... 44 2.2.实验................................................................................................................................................................ 45 2.2.1 材料与化学品 ...................................................................................................................................... 45 2.2.2 电极活化 .............................................................................................................................................. 46 2.2.3 电极特性 ............................................................................................................................................. 46 2.2.4 半电池评估 ............................................................................................................................................. 48 2.3 结果与讨论 ............................................................................................................................................. 49 2.3.1 循环伏安法 (CV) 和处理参数优化 ............................................................................................. 49 2.3.1.1 用 K 2 Cr 2 O 7 溶液活化时温度的影响 ............................................................................. 51 2.3.1.2 用 K 2 Cr 2 O 7 溶液活化时时间的影响 ............................................................................. 52 2.3.1.3 在 140 o C 温度下持续时间的影响 ............................................................................................. 53 2.3.1.4 性能最佳的电极 ................................................................................................................ 54 2.3.2 线性扫描伏安法(LSV) .............................................................................................................. 56 2.3.3 表面特性 ............................................................................................................................. 58 2.3.3.1 扫描电子显微镜(SEM) ............................................................................................. 58 2.3.3.2 傅里叶变换红外光谱(FTIR) ............................................................................. 60 2.3.3.3 线性扫描伏安法(LSV)的表面分析 ............................................................................. 61 2.3.4 吸附位点的测定 ............................................................................................................................................................... 62 2.3.5 润湿性测试 ................................................................................................................................ 65 2.3.6 半电池评估 ................................................................................................................................ 68 2.4. 结论 ................................................................................................................................................ 73
抽象背景:旋转阳极X射线源的允许输入功率密度受到可用目标材料的性能的限制。尽管使用临床实践的变化,但使用的用于焦点表面温度的简化公式忽略了管电压。如本工作所提出的那样,改进了电子传输和靶标侵蚀的建模,可改善X射线输出降解对X射线输出降解,绝对X射线剂量输出以及诊断成像的质量和Orthovolt Cancer Cherapy的质量,用于广泛的技术因素。目的:改进电子功率吸收的建模以包括体积效应和表面侵蚀,以提高对X射线输出降低的理解,增强X射线管的可靠性并安全地扩大其使用场。方法:我们结合了蒙特卡洛电子传输模拟,耦合的热弹性有限元建模,侵蚀引起的表面粒度以及热物理和热机械目标特性的温度依赖性。提出了半经验的热机械标准来预测目标侵蚀。我们模拟了侵蚀的钨 - 侵蚀目标的吸收电子功率,并用带有球形单层的toge靶模仿,并与原始目标进行比较。Results: The absorbed electronic power and with it the conversion efficiency varies with tube voltage and the state of erosion.With reference to 80 kV (100%), the absorption of a severely eroded relative to a pristine target is 105% (30 kV), 99% (100 kV), 97% (120 kV), 96% (150 kV), 93% (200 kV), 87%(250 kV)和79%(300 kV)。我们表明,尽管表面加热的简单的müller -oosterkamp模型低估了较高的管电压相对于在80 kV下的运行的好处,但该误差限制为30 kV的误差低于-6%(建议还原),而300 kV + 13%(输入功率增加允许)。结论:纠正侵蚀目标材料的X射线转换效率,通常无法通过测量管电流来访问,这可能意味着对现有的X射线剂量计算进行校正。随着管电压增加的旋转阳极X射线试管的相对增加,其量大的电压易于预测的agnosmmüller– oosterkamp age agnosism age age agnosism age agnosism age age ageostermism age age age agnosism age age age age age agnosism agn依赖性的依赖性依赖于焦距的依赖性,这显着的量加热模型要小得多。钨孔和粒度的扩散率随着管电压增加的旋转阳极X射线试管的相对增加,其量大的电压易于预测的agnosmmüller– oosterkamp age agnosism age age agnosism age agnosism age age ageostermism age age age agnosism age age age age age agnosism agn依赖性的依赖性依赖于焦距的依赖性,这显着的量加热模型要小得多。钨孔和粒度的扩散率
33238 移除永久起搏器静脉电极 HMO|PPO* Carelon 33240 插入带有现有单导线的除颤器 BCNA|MAPPO|HMO|PPO* Carelon 33241 移除除颤器 BCNA|MAPPO|HMO|PPO* Carelon 33243 通过切口移除除颤器电极 BCNA|MAPPO|HMO|PPO* Carelon 33244 通过静脉移除除颤器电极 BCNA|MAPPO|HMO|PPO* Carelon 33249 插入植入式除颤系统 BCNA|MAPPO|HMO|PPO* Carelon 33262 移除和更换单导线除颤器 BCNA|MAPPO|HMO|PPO* Carelon 33263 移除和更换双导线除颤器 BCNA|MAPPO|HMO|PPO* Carelon 33264 移除和更换多导线除颤器 BCNA|MAPPO|HMO|PPO* Carelon 33270 插入或更换带电极的除颤器 BCNA|MAPPO|HMO|PPO* Carelon 33271 插入除颤器电极 BCNA|MAPPO|HMO|PPO* Carelon 33272 移除除颤器电极 BCNA|MAPPO|HMO|PPO* Carelon 33273 重新定位除颤器电极 BCNA|MAPPO|HMO|PPO* Carelon
加拿大的Nitazene合成实验室。最近的一项研究认可了加拿大芬太尼的增长fentanyl的生产,并在国际纳尔科省分布中的占地面积增长。
给予降低肿瘤负荷的患者的一种治疗形式,例如手术切除肿瘤,针对肿瘤的全身治疗(包括单克隆抗体),化学疗法,放疗,免疫疗法,激素治疗,其他或未指定的全身治疗和干细胞移植。注意用作辅助维持疗法的激素治疗,例如长期在乳腺癌中不包括肿瘤还原性治疗。疾病发作类型术语涵盖复发/进展/转化事件。发作的基础使用与诊断建议的ENCR相同的层次结构。 应使用最高基础,这不一定与用于识别复发,进程或转化日期的诊断程序相对应。 疾病发作的日期这被定义为病历/病理中的第一个日期,在该日期中,无论用于诊断诊断出复发,进展或转化的诊断程序的类型如何,对复发,进展或转化的诊断被诊断出来。 疾病发作位置*疾病情节位置仅实体瘤:发作的基础使用与诊断建议的ENCR相同的层次结构。应使用最高基础,这不一定与用于识别复发,进程或转化日期的诊断程序相对应。疾病发作的日期这被定义为病历/病理中的第一个日期,在该日期中,无论用于诊断诊断出复发,进展或转化的诊断程序的类型如何,对复发,进展或转化的诊断被诊断出来。疾病发作位置*疾病情节位置仅实体瘤:
DNA是一种用于在生物体中携带遗传信息的核酸。这是一个9双链分子,该分子是由两个可能的氮基碱(denine&10 g uanine)和嘧啶(C ytosine&t hymine)和两个化学上极末端形成的,即11 5'和3'。watson-crick互补(WCC)的关系,其特征在于12 a c = t,g c = c,反之亦然,用于结合DNA的碱基。在1994年,Adleman [2] 13讨论了使用DNA分子的汉密尔顿路径问题。通过在DNA分子中编码一个小图,在所有操作中使用标准方案(例如WCC关系)进行了15个问题,可以解决此(NP完整)14问题。由于大规模的并行性,16个DNA计算成为研究人员中有强大的工具,可以解决计算17个困难问题。此外,对合成的DNA和RNA 18分子进行了实验,以控制其组合约束,例如恒定的GC-含量 - 含量和19次锤距。在有限领域的20个线性代码已经探索了将近三十年,但是在Hammons 22等人的出色工作之后,这个21个研究领域经历了惊人的速度。[21]当他们在z 4上建立线性代码与其他非23个线性二进制代码之间的关系时。之后,许多作者考虑了具有环24结构的字母,并通过特定的灰色图在有限的字段上找到了许多良好的线性代码。在25个线性代码类别中,由于其26个理论丰富性和实际实现,循环代码是关键和研究最多的代码。Liu等。 锤子37Liu等。锤子37最近,许多作者[4,5,14,20] 27使用环上的环状代码构建了DNA代码。,例如,Yildiz和Siap [20]和28 Bayram等。 [4]分别探索了环F 2 [V] /⟨v 4 - 1⟩和F 4 + V F 4,V 2 = V,29的DNA代码。 在2019年,Mostafanasab和Darani [14]讨论了链环F 2 + U F 2 + U 2 F 2上的环状DNA 30代码的结构。 [13]在f 4 [u] /⟨u 3⟩上的31奇数长度的循环DNA代码上工作。 同时,Gursoy等人。 [10]使用偏斜的环状代码研究了可逆的DNA代码32。 Recently, Cengellenmis et al [ 7 ] and Yildilz [ 20 ] studied DNA 33 codes from skew cyclic codes over the rings F 2 [ u , v , w ] , where u 2 = v 2 + v = w 2 + w = 34 uv + vu = uw + wu = vw + wv = 0 and F 2 [ u ] / ( u 4 − 1 ) , respectively. 35由上述作品激励,我们考虑了36个有限链环r = f 4 [v] /⟨v 3⟩构造任意长度的DNA代码的循环和偏斜循环代码。,例如,Yildiz和Siap [20]和28 Bayram等。[4]分别探索了环F 2 [V] /⟨v 4 - 1⟩和F 4 + V F 4,V 2 = V,29的DNA代码。在2019年,Mostafanasab和Darani [14]讨论了链环F 2 + U F 2 + U 2 F 2上的环状DNA 30代码的结构。[13]在f 4 [u] /⟨u 3⟩上的31奇数长度的循环DNA代码上工作。同时,Gursoy等人。[10]使用偏斜的环状代码研究了可逆的DNA代码32。Recently, Cengellenmis et al [ 7 ] and Yildilz [ 20 ] studied DNA 33 codes from skew cyclic codes over the rings F 2 [ u , v , w ] , where u 2 = v 2 + v = w 2 + w = 34 uv + vu = uw + wu = vw + wv = 0 and F 2 [ u ] / ( u 4 − 1 ) , respectively.35由上述作品激励,我们考虑了36个有限链环r = f 4 [v] /⟨v 3⟩构造任意长度的DNA代码的循环和偏斜循环代码。
在光子学中,谐振器是一种用途元素,其目的是引导光。它们包括各种大小的数量级和激光源的力量。可以认为,某些效应可以被认为是否定的,导致简化的数学模型。我们将重点关注两个这样的模型:一种与耳语画廊模式谐振器有关,另一个与响声/Fabry-Perot共振器有关。在第一种情况下,保留的模型会导致整个空间中的二维线性Helmholtz方程,其物质定律沿有界的界面跳跃。对靠近真实轴的复合共振集进行了分析,对应于靠近界面的模式。在第二种情况下,考虑了基于Lugiato-LeFever方程的一维模型。从溶液中发出的施加解决方案的分支被突出显示,提供了频率梳子解决方案。
基于银纳米线 (AgNW) 的透明电极 (TE) 具有良好的物理性能,由于其成本低、灵活性和低毒性,成为透明导电氧化物的有前途的替代品。然而,它们在恶劣条件下存在稳定性问题,而封装可以克服这些限制。本文报道了一种低成本、可扩展的透明电极制造和研究,该透明电极基于喷涂 AgNW 网络,该网络涂有通过大气压空间原子层沉积 (AP-SALD) 在温和沉积温度 (≤ 220°C) 下沉积的 MgO 薄膜。本文首次报道了通过 AP-SALD 制造 MgO 薄膜,并优化了它们在不同基底上的沉积。与传统的原子层沉积 (ALD) 相比,MgO 表现出纯相和保形生长,具有优先 (220) 晶体取向和更高的生长速率。此外,由于 MgO 在 AgNW 上的保形涂层,获得的纳米复合材料表现出约 85% 的高光学透明度和柔韧性,同时在热应力和电应力下保持高稳定性。事实上,这项研究表明,对于厚度仅为几纳米的薄 MgO 涂层,AgNW 网络的稳定性明显增强。最后,制造了一个概念验证透明加热器来融化一块奶酪。