在基于序列的元基因组生物透镜中鉴定出了芽孢杆菌属的水解酶(NCBI登录号:WP_034624255.1)。简要地,我们筛选了海洋宏基因组MARREF数据库,其中1个包含约470万个蛋白质编码序列。通过使用Diamond BlastP查询输入序列,以默认参数(身份百分比> 60%;对准长度> 70; e-e-value <1×10 −5)对215个氨基酸脂肪酶的bacillus pumilus pumilus pumilus(NCBI辅助编号:wp_1066666668777777777777777777777; morecrect da) Point,9.77),一种具有工业潜力的多功能脂肪酶。与来自B. pumilus的脂肪酶相比,总共检索了33个序列(从2,821×10 -105到3.24×10 -12)。证实,分配给芽孢杆菌细菌的一个这样的序列(GenBank登录号,WP_034624255.1)被证实,可以编码预测的全长长度215氨基酸长脂肪酶(E-vorue 2,821×10 -136和92.1%相似的cat catue catue catsy cate cate cate catsy cate catsy cate catsy cate cate cate catemanty) D167,H189),被选为进一步研究的目标。在MARREF数据库中,序列WP_034624255.1起源于从韩国Seongsan-Ri前面的海水海绵中分离出的微生物组(ENA BioSame samn06016472; Ena Bioprodroprodrodryprodeion prjna3555555554555455543535554353555435355543535554353555435355555543555555543535535355353553535553535535355353553535535355353553535535355.一旦确定,编码野生型酶的215个氨基酸序列(GenBank登录号WP_075743487; Molecular Mose,23,102.65 Da;等电点,9.77)用作基因合成的A模板。s1)在与Ni-Nta His-Bind树脂结合后。合成后,获得了215个氨基酸序列,编码分子质量为21,974.60 DA的酶,以及8.0的等电点。生产并纯化了可溶性N末端六位苯二胺(His6) - 使用SDS-PAGE分析> 98%;图。该酶称为LIP MRD9(唇部指脂肪酶; MRD指的是MARREF数据库)。
摘要:由于其高能量和功率密度,锂离子电池(LIBS)已响应对有效储能解决方案的需求而获得了普及。电极体系结构在确定电池性能中的重要性突出了优化的需求。通过开发有用的有机聚合物,已经研究了环糊精体系结构,以提高基于LI的电池的性能。称为环糊精(CD)的大环寡糖具有相对疏水的腔,可以包围其他分子。在许多行业中发现了这种“寄宿与招待”关系有用。CD的氢键和合适的内腔直径已导致其作为锂离子扩散通道的选择。CD也已用作固态电池的固体电解质以及分离器和粘合剂,以确保电极组件之间的粘附。本评论提供了基于CD的材料以及它们在电池组件中的使用方式的一般概述,突出了它们的优势。
摘要:CRLX101是一种基于环糊精的纳米药物,旨在改善抗癌药物camptothecin的递送和效率。环糊精具有独特的特性,可以增强药物溶解度,稳定性和生物利用度,使其成为药物输送的有吸引力的选择。与常规化学疗法相比,使用基于环糊精的纳米颗粒可以潜在地降低毒性并增加治疗指数。CRLX101在临床前研究中表现出了希望,表明肿瘤靶向增强并延长药物释放。这项系统审查遵循PRISMA指南,评估了使用临床试验在癌症治疗中CRLX101的效率和毒性。使用特定的搜索词在PubMed,Scopus,Scopus,Scopus,Scopus,Scopus,Web of Science和Cochrane数据库中搜索了研究。使用Robins-I和Cochrane风险工具评估了偏差的风险。筛选6018篇文章后,最终审查中包括了9篇文章。这些研究于2013年至2022年之间进行,重点是具有晚期或转移性癌症对标准疗法具有抗性的患者。crlx101通常与其他治疗剂结合使用,从而改善了诸如无进展生存率和临床益处的提高。毒性通常是可以控制的,包括疲劳,恶心和贫血在内的常见不良事件。
多个PEG链的水合体积。TX100是一种表面活性剂,具有乙氧基甲氧基辛基的基本骨架,带有一个亲水头和一个疏水性尾巴的长矛状结构。使用荧光光谱法检查了表面活性剂与模型抗原之间的相互作用,据说这比UV-VIS光谱,5和NMR光谱谱比敏感性高1000倍,该光谱具有与UV-VIS光谱的敏感性相当的敏感性。牛血清白蛋白(BSA)长期以来一直详细研究了溶液中的抗原性和抗原性,被选为模型抗原。6,7我们还专注于环糊精(CD)作为抗原疏水核心的通用模型,因为长期以来一直将CD作为酶的底物结合位点的模型研究,从1954年的Einschlussverbindunger(包含化合物)出版。8有一些使用CD衍生物作为氧化酶和酯酶模型的例子。9,10最近,据报道CD衍生物是脂肪酶的模型,这些脂肪酶可以选择性地水解疏水腔中的溶血磷脂。11因此,CD在历史上被认为是酶的底物结合位点的模型,这是外部疏水物质界面的典型示例,并探索辅助表面活性剂在其上的作用如何被认为是理想的实验系统,可以普遍地模拟蛋白质的疏水核心核心核心。在这项研究中,在环脱糖蛋白中选择了羟丙基-B-环糊精(HP-B -CD),该研究具有明确定义的疏水性和疏水性表面,并最大程度地显示了疏水性荧光探针的荧光(见下文)。使用特定的蛋白质,例如BSA,卵蛋白(OVA)和核糖核酸酶(RNase)作为抗原模型,不允许我们摆脱其独特的特性,12并利用CD作为抗原核心核心的模型,可以为这个问题提供解决方案。通过评估疏水性荧光探针与模型抗原疏水性核心的吸附和结合,评估了各种非离子表面活性剂与模型抗原BSA和HP -B -CD模型抗原之间的相互作用。The hydrophobic core environment of BSA and HP- b -CD was evaluated by the fluorescence of 8-anilinonaphthalene-1- sulfonic acid (ANS), a hydrophobic fluorescent probe whose fluorescence is enhanced in hydrophobic environments or adsorbed in the lipid bilayer of liposomes, in the hydrophobic core of proteins, 13–17 or in the表面活性剂的胶束。18因此,ANS用于评估这些大分子和小分子提供的疏水环境。然而,一定浓度后,ANS和其他荧光分子的荧光强度开始降低。这称为浓度猝灭,由于内部滤波器效应,它被广泛称为淬火。19其他可能的淬火机制包括forster共振能量转移(FRET)和DEXTER机制,20,21是由荧光分子彼此接近造成的。无论机制如何,荧光分子数量增加引起的淬火是评估中培养基和大分子提供的疏水环境的障碍。为了解决这个问题,我们在本研究中利用了抑制剂模型。
摘要 结直肠癌 (CRC) 是全球第三大最常见的癌症类型,在癌症相关死亡人数中排名第二。就目前的治疗方法而言,尚未提出一种明确、安全且有效的 CRC 治疗方法。然而,新的药物输送系统在这一领域显示出良好的前景。基于两亲性环糊精的纳米载体是一种创新且有趣的制剂方法,可通过口服给药靶向结肠。在我们之前的研究中,旨在对结肠肿瘤进行口服化疗,并通过配方开发研究、粘蛋白相互作用、粘液渗透、细胞毒性和二维细胞培养中的渗透性,以及在早期和晚期结肠癌模型中的体内抗肿瘤和抗转移功效以及单剂量口服给药后的生物分布获得了有希望的结果。本研究旨在进一步阐明口服喜树碱 (CPT) 负载两亲性环糊精纳米粒子在局部治疗结直肠肿瘤方面的药物释放行为和在三维肿瘤模型中的功效,以预测不同纳米载体的体内功效。主要目的是在配方开发与体外阶段和动物研究之间架起一座桥梁。在这种情况下,CPT 负载的聚阳离子-β-环糊精纳米粒子分别导致小鼠和人类 CT26 和 HT29 结肠癌球体肿瘤细胞活力降低。此外,首次通过释放动力学模型对释放曲线(新型药物输送系统中关键质量参数之一)进行了数学研究。总体研究结果表明,通过带正电荷的聚-β-CD-C6 纳米粒子将抗癌药物(如 CPT)口服靶向至结肠肿瘤以实现局部和/或全身疗效的策略是一种很有前途的方法。
在全球谷物产量不断增加的背景下,伴随着各种农药,除草剂,杀菌剂和其他化学农药的大量投资。它引起了不可避免的环境问题和食品安全问题。当前的研究表明,使用环糊精及其衍生物保护农药可以显着减少污染环境的农业化学数量。使用环糊精的空腔特性,我们可以参考药物分子生产环糊精和环糊精聚合物形成包含化合物的类似方式。总体而言,β-环糊精及其衍生物被用作一种新的农药赋形剂,以提高农药的稳定性,防止其氧化和脱位,改善农药的溶解度和生物利用度,减少药物的毒性副作用,并掩盖药物的食物。在这篇综述中,我们着重于总结β-环糊精及其在农药和其他领域中的衍生物的最新研究进展,并在各种应用中提供了β-环糊精聚合物的系统分类,以及新的Shinthesis方法和技术。最后,预见了环糊精样聚合物的未来发展,并深入讨论并解决了研究引起的问题。
6. 在他们的评论中,主要存在两个不同意见。不同意纳入使用从加药饲料到未加药饲料的默认残留水平的选项。虽然承认最好调查从加药饲料到未加药饲料的实际残留水平,但一些成员认识到并不总是可以获得大量信息,并支持使用默认的低残留水平来估计行动水平的选项,这是在没有更好数据的情况下的务实解决方案。最后,不同意有必要就拟议行动水平的消费者安全征求粮农组织/世卫组织食品添加剂联合专家委员会 (JECFA) 的建议。残留对食用商品残留物的额外贡献很小,一些成员建议委员会可以利用理论最大日摄入量 (TMDI) 方法来估计额外贡献,而其他成员则建议继续目前的做法,即就饮食暴露征求 JECFA 的建议。
摘要:癌症包括一组复杂且异质性的疾病,对全球患者和医疗保健系统来说仍然是一个挑战。因此,开发先进的治疗策略以降低癌症相关发病率和死亡率趋势至关重要。科学家们一直致力于为抗癌剂创造高效的运载载体。在可能的材料中,环糊精 (CD) 在过去几年中引起了越来越多的关注,从而导致了有前途的抗肿瘤纳米药物的出现。研究人员利用其有利的化学结构、易于改性、天然来源、生物相容性、低免疫原性和商业可用性,研究了针对多种癌症的基于 CD 的治疗制剂。在这方面,在本文中,我们简要介绍了 CD 在设计高性能纳米载体方面的特性,并进一步回顾了基于 CD 的运载系统在癌症管理中的一些最新潜在应用。
1 美国罗彻斯特梅奥诊所生物化学与分子生物学系;2 美国贝塞斯达国立卫生研究院国家人类基因组研究所转化与功能基因组学分支机构;3 美国俄克拉荷马城俄克拉荷马医学研究基金会功能与化学基因组学项目;4 美国艾奥瓦州立大学遗传学、发育与细胞生物学系;5 加拿大多伦多 Unity Health 与多伦多大学圣迈克尔医院李嘉诚知识研究所斑马鱼高级药物发现中心和基南生物医学科学研究中心;6 美国罗彻斯特梅奥诊所心血管医学系;7 美国巴尔的摩卡内基科学研究所胚胎学系;8 美国罗彻斯特梅奥诊所临床基因组学系;9 美国罗彻斯特梅奥诊所耳鼻喉科系; 10 印度德里科学与工业研究理事会基因组学与综合生物学研究所基因组学与分子医学部;11 美国费城天普大学生物系;12 德国科隆大学动物学研究所发育生物学部
摘要:纳米载体分子的靶向药物递送可以增加癌症治疗的效率。靶向配体之一是叶酸(FA),该叶酸对叶酸受体具有很高的属性,在许多癌症中都过表达。在此,我们描述了含有量子点(QD)和β-环性克推丁蛋白(β -cd)的纳米缀合物的制备,并具有叶状靶向特性,用于赋予抗癌化合物C -2028。C -2028通过β-CD的包含复合物与纳米偶联物结合。在癌症(H460,DU-145和LNCAP)和正常(MRC-5和PNT1A)细胞中,使用FA在QDS-β-CD(C-2028)-FA纳米缀合物中对细胞毒性,细胞摄取以及内在化机制的影响。使用DLS(动态光散射),ZP(ZETA电位),具有耗散(QCM-D)和UV-VIS光谱的QDS-β-CD(C-2028)-FA进行表征。C-2028与无毒QD或QDS-β-CD-FA的结合没有改变该化合物的细胞毒性。共聚焦显微镜研究证明,在纳米偶联物中使用FA显着增加了递送化合物的量,尤其是癌细胞。QD绿色-β-CD(C -2028)-FA通过不同水平的多个内吞作用途径进入细胞,具体取决于细胞系。得出结论,FA的使用是QDS平台中良好的自动分子,将药物输送到癌细胞中。