两种最常见的微芯片架构类型是专用集成电路 (ASIC) 和现场可编程门阵列 (FPGA)。ASIC 是量身定制的,专为特定目的而设计和优化,具有优化该应用的性能和效率的优势。GPU 是一个常见的例子。另一方面,FPGA 则更为通用,它牺牲了对任何一种应用的优化,以在更广泛的应用中获得更大的规模经济。正如“现场可编程”所暗示的那样,FPGA 更适合需要不断更新算法的应用,例如无线通信和驾驶辅助系统。2 在国防领域,FPGA 常见于声纳和雷达等应用的信号处理板上。3 然而,这种明确的区别在实践中往往很模糊,因为 FPGA 越来越多地针对人工智能 (AI) 或 5G 等更具体的应用进行量身定制,并且这两种芯片架构在复杂性和精密性方面都涵盖了广泛的产品。
1。简介:attosond Electron动力学,Petahertz光电子和量子力学中的“损失时间”的问题370 2。量子力学中的严重问题:量子跳跃,不确定性关系和Pauli定理371 2.1 Bohr的理论,量子跳跃和时间测量的不确定性; 2.2 Pauli的定理3。量子力学中的时间面孔372 3.1内部和外部时间; 3.2作为量子可观察的时间和时间操作员; 3.3延迟时间4。mandelstam±tamm不确定性关系374 5。量子保真度和量子速度限制375 6。能量±时间不确定性,与时间有关的汉密尔顿人375 7。激光驱动的量子动力学376 8。不确定性关系和电子动力学的速度限制376 9。Keldysh参数和光电子的Petahertz极限378 10。mandelstam±Tamm的不确定性关系和量子进化的信息几何度量379 10.1量子演化的几何形状; 10.2量子保真度和渔民信息; 10.3不确定性关系和cram er±rao绑定11。量子速度极限的非量化性质381 12。热力学不确定性限制382 12.1信息指标和热力学不确定性; 12.2膜蛋白温度阈值的热力学极限13。结论383参考383
抽象的生物电子医学通过感测,处理和调节人体神经系统中产生的电子信号(被标记为“神经信号”)来治疗慢性疾病。虽然电子电路已经在该域中使用了几年,但微电子技术的进展现在允许越来越准确且有针对性的解决方案以获得治疗益处。例如,现在可以在特定神经纤维中调节信号,从而靶向特定疾病。但是,要完全利用这种方法,重要的是要了解神经信号的哪些方面很重要,刺激的效果是什么以及哪些电路设计可以最好地实现所需的结果。神经形态电子电路代表了实现这一目标的一种有希望的设计风格:它们的超低功率特征和生物学上可行的时间常数使它们成为建立最佳接口到真正神经加工系统的理想候选者,从而实现实时闭环与生物组织的闭环相互作用。在本文中,我们强调了神经形态回路的主要特征,这些电路非常适合与神经系统接口,并展示它们如何用于构建闭环杂种人工和生物学神经加工系统。我们介绍了可以实施神经计算基础的示例,以对这些闭环系统中感应的信号进行计算,并讨论使用其输出进行神经刺激的方法。我们描述了遵循这种方法的应用程序的示例,突出了需要解决的开放挑战,并提出了克服当前局限性所需的措施。
电气调节深脑的设备已使神经和精神疾病的管理中的重要突破。此类设备通常是厘米尺度,需要手术插入和有线供电,从而增加了每日活动期间出血,感染和损害的风险。使用较小的远程材料可能导致侵入性神经调节较少。在这里,我们提出了能够无线传输电信号的磁电纳米电极,以响应于外部磁场。这种调节机制不需要对神经组织的遗传修饰,允许动物在刺激过程中自由移动,并使用非共振载体频率。使用这些纳米电极,我们在体内表现出神经元调节的体外和深脑靶标。我们还表明,局部亚乳头调制促进了通过基底神经节电路连接的其他区域的调制,从而导致小鼠行为变化。磁电材料提出了一种多功能平台技术,可用于侵入性较小的深脑神经调节。
此外,强制接种疫苗这一事实是对宗教概念的侵犯,即人类只服从于神圣的创造者。实际上,没有一种宗教不支持宗教豁免。但接种疫苗对社会所谓的好处又如何呢?第一,群体免疫不是圣经价值观,在犹太教法中也毫无依据。我只对我孩子的健康负责,而不对所谓群体的某些统计或理论健康负责。是的,社区有共同的责任,但不能以牺牲自己或孩子的风险为代价,哪怕是最轻微的风险。每一种疫苗都有风险。这是不争的事实。最高法院在 2010 年裁定疫苗“不可避免地不安全”。但即使接种疫苗对社会有益,也不能为达目的不择手段。
a 诺拉宾特阿卜杜拉赫曼公主大学科学学院物理系,邮政信箱 84428,利雅得 11671,沙特阿拉伯 b 卡玛维尔巴劳帕蒂尔学院 Rayat Shikshan Sanstha 物理系,瓦希,新孟买,400703,马哈拉施特拉邦,印度 c 哈立德国王大学科学学院物理系先进功能材料与光电子实验室(AFMOL),沙特阿拉伯阿卜哈 61413 哈立德国王大学先进材料科学研究中心(RCAMS),沙特阿拉伯阿卜哈 61413,邮政信箱 9004 e 阿斯旺大学科学学院物理系,埃及 f 吉赞大学科学学院物理系,邮政信箱。 114,吉赞,45142,沙特阿拉伯 g 昌迪加尔大学化学系和大学研究与发展中心,莫哈里 - 140413,旁遮普,印度 h 佛罗里达理工大学环境工程系纳米生物技术实验室,莱克兰,佛罗里达州 33805,美国 i 石油和能源研究大学工程学院,德拉敦,248007,印度
• 微电子技术 - 它是一种集成电路技术,能够在面积为 100 平方毫米的一小块硅片(称为硅片)上生产数百万个元件。 • 集成电路的主要例子是微处理器,它可以在单个半导体芯片上执行算术、逻辑和存储功能
摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。