我们研究了婴儿期为儿童的情绪调节和休息状态功能连通性(RS-FC)的基于证据的育儿计划的长期因果关系。家庭被儿童保护服务(CPS)转诊为寄养计划的转移的一部分。还招募了一群低风险的家庭。cps涉及的家庭被随机分配以接收目标(附件和生物行为追赶,ABC)或对照干预措施(家庭的发展教育,DEF),然后婴儿已满2。两种干预措施都是基于家庭的,手动的,并且长10年。在童年时期,儿童接受了6分钟的休息状态功能性MRI扫描。基于杏仁核种子的RS-FC分析以干预组作为群体级别的兴趣预测指标完成。57个儿童(N ABC = 21; n def = 17; n comp = 19; m年龄= 10.02岁,范围= 8.08 - 12.14)成功地扫描了。def组证明了负左杏仁核↔OFC连接性,而在ABC和比较组中,连通性接近零(ABCVSDEF:Cohen的D = 1.17)。ABC可能会在干预完成后约8年增强高危儿童的调节性神经生物学结局。
抽象的背景微卫星稳定的结直肠肝转移(MSS CLM)保持免疫抑制性肿瘤微环境(TME)。从历史上看,基于免疫的方法无效。vb-111(Ofranergene obadenovec)是针对TME的遗传改性腺病毒载体;其独特的双重机制诱导免疫反应并破坏新血管形成。检查点抑制可能协同病毒介导的抗血管生成基因治疗引起的免疫反应。我们旨在检查VB-111和Nivolumab在难治性MSS CLM患者中的安全性和抗肿瘤活性,并表征免疫治疗反应。方法这是一项II期研究,对成年患者进行了组织学确认的MSS CLM,并在先前的治疗中进展。启动剂量的Vb-1111 1×10 13病毒颗粒在开始双周的Nivolumab 240 mg之前静脉注射2周,并每6周继续进行一次。组合一直持续到疾病进展或不可接受的毒性为止。主要目标是总体响应率和安全性/耐受性。次要目标包括中位总生存期和无进展生存。相关研究是对配对的肿瘤活检和血液进行的。在2020年8月至2021年12月之间的结果,中位年龄为50.5岁(40-75),女性为14%。中位随访时间为5.5个月。在10名可评估患者中,VB-111和Nivolumab的组合未能证明放射线照相反应。充其量,有2名患者患有稳定的疾病。外围的免疫分析总生存期中位数为5.5个月(95%CI:2.3至10.8),无进展的中位生存期为1.8个月(95%CI:1.4至1.9)。最常见的3–4级治疗相关不良事件是发烧/寒冷,流感样症状和淋巴细胞减少症。没有报道与治疗相关的死亡。对配对肿瘤活检的免疫组织化学染色的定性分析在治疗后没有显示出明显的免疫浸润,除了一名患者具有特殊生存期(26.0个月)。
尽管过量食用高脂肪食物是导致体重增加的主要原因,但是将膳食脂肪的口腔感觉特性与奖赏评价和饮食行为联系起来的神经机制仍不清楚。在这里,我们将新颖的食品工程方法与功能性神经影像学相结合,以表明人类眶额皮质 (OFC) 将高脂肪食物引起的口腔感觉转化为指导饮食行为的主观经济评价。男性和女性志愿者品尝并评估了脂肪和糖含量不同的营养控制液体食物(“奶昔”)。在口服食物加工过程中,OFC 活动编码了一个特定的口腔感觉参数,该参数介导食物脂肪含量对奖赏值的影响:滑动摩擦系数。具体而言,OFC 对口腔中食物的反应反映了脂肪液体在口腔表面产生的光滑、油腻质地(即口感)。OFC 中不同的活动模式编码了与特定食物相关的经济价值,这反映了滑动摩擦与其他食物特性(糖、脂肪、粘度)的主观整合。至关重要的是,OFC 对口腔质地的神经敏感性可以预测个体在自然饮食测试中的脂肪偏好:OFC 对与脂肪相关的口腔质地更敏感的个体在随意进食期间会消耗更多脂肪。我们的研究结果表明,人类大脑的奖励系统会通过口腔滑动摩擦感知膳食脂肪,这是一种机械食物参数,可能通过调节食物和口腔表面之间的相互作用来控制我们的日常饮食体验。这些发现确定了人类 OFC 在评估口腔食物质地以调节对高脂肪食物的偏好方面发挥的特殊作用。
'dwd dqg frgh dydlodlolw \ vwdwhphqw'dqg frgh xqghuo \ lqj wklv uhvhdufk uhvhdufk duh dydlodeoh dydlodeoh iurp fnqrzohgjphqwv:h wkdqn:roiudp 6fkxow] dqg klv jurxs iru vxsssruw $ ohmdqgurϯϯ&dvdexhqd 5rguljxh] 6lprq 0 motuvkdoo 6whidq 6dydjh iru vxssssssruw zlwul zl wullu&erorer& 。 Zrun ZDV XQGGG E \ wkh:Hoofrph 7uxvw dqg Wkh 5r \ do 6rflhw \ 6lu +6lu +hqu \'doh)hoorzvkls ϯϱ judqwv = = dqg = dqg = dqg = $ wr) 06 7udqvodwlrqdo 5hvfufk)dflolw \ 75)zklfk lv vxssruwhg e \ dϯϳ:hoofrph 7uxvw 0dmru $ zdug us wkh sxusrvh ri 2shq $ ffhvv wkh dxwkru kdv dssolhg d && ϯϵ%
Paul S. Muhle-Karbe,1,2,3,3,10,12, * Hannah Sheahan,1,4,10 Giovanni Pezzulo,5 Hugo J. Spiers,5 Hugo J. Spiers,6 Samson Chien,7 Nicolas W. Schuck,7 Nicolas W. Schuck,7,8,9,9,9,9,11和Christopher Summer summer filld 1,3,3,11,3,3,11, *伯明翰大学心理学,伯明翰B15 2SA,英国3人类脑健康中心,伯明翰大学,伯明翰大学,伯明翰B15 2SA,英国4 Google DeepMind,伦敦EC4A 3TW,英国5认知科学和技术研究所Neurocode,Max Planck人类发展研究所,14195德国柏林8 Max Planck UCL计算精神病学与老化研究中心,14195德国柏林9号,柏林9学院,汉堡大学,20146年,德国汉堡,汉堡,汉堡10.这些作者10.这些作者贡献了11个高级作者12领导人的接触。 (P.S.M.-K。),Christopher.SummerField@psy.ox.ac.uk(C.S.)https://doi.org/10.1016/j.neuron.2023.08.021https://doi.org/10.1016/j.neuron.2023.08.021
上下文:锻炼引起的肌肉损伤(EIMD)尤其是在运动和康复中。它会导致骨骼肌功能和酸痛的损失。由于没有公司的预防策略,我们旨在评估非热448-kHz电容性电阻单极射频(CRMRF)疗法的预防效率,在膝盖流动中EIMD反应的偏心后出现后,设计:在对照组(CG; n = 15)和实验组(例如; n = 14)中随机分配29名健康男性(年龄:25.2 [4.6] y),其中EG跟随5每天448-kHz CRMRF疗法。所有评估均在基线和EIMD后(EIMD + 1,EIMD + 2,EIMD + 5和EIMD + 9 D)进行。我们测量了股二头肌和半牙肌的张力学,以计算收缩时间,最大位移和收缩的径向速度,单侧等距膝关节孔,最大的自愿收缩扭转扭转扭转扭转和最大的100毫秒速度。结果:最大的自愿收缩扭矩和第一次100毫秒的扭矩发育速率降低了,例如在EG中,并且仅在EG中恢复。二头肌收缩时间仅在CG中增加(无恢复),而在半决肌收缩时间中,EG(仅在EIMD + 1)和CG(无恢复)中增加了。在这两种肌肉中,EG(在EIMD + 1和EIMD + 2)和CG(无恢复)中的张力学最大位移降低。此外,在两种肌肉中,径向收缩的径向速度在EG中(从EIMD + 1到EIMD + 5)和CG(无恢复)。结论:该研究表明,诱导EIMD骨骼肌力量和膝关节骨的收缩参数后,CRMRF治疗的有益作用。
引言骨质疏松症(OP)是一种骨骼疾病,其特征是低骨矿物质牙齿(BMD)和骨组织微体系结构的恶化。这是成年人中最普遍的骨疾病,尤其是在绝经后妇女中,并且经常与Fra gility骨折有关,从而导致发病率和死亡率增加,生活质量较低,以及如此出色的如此cial和经济负担(1)。这篇评论的目的是概述OP领域的最新进展。鉴于大量出版物,我们重点介绍了三个主要主题:肠道菌群在OP发病机理中的作用,以及最近开发的用于筛选和诊断OP的筛查的工具,以及射线射频旋转旋转式旋转率超光谱法(REMS)和机器学习(ML)技术的作用。使用以下在2022年发表的研究的关键字搜索了Medline数据库(PubMed):“ gut mi crobiota和骨质疏松症”,“射频地震多光谱型”,“ REMS”,“ REMS”,“机器学习和骨质疏松症”。
1次北海道大学兽医学院兽医教学医院,萨波罗大学,日本060-0819,日本2高级药物系,北海道大学兽医学院,萨波多大学,萨普罗大学060-0818,日本疾病控制部,3。兽医手术1,阿萨布大学兽医学院,萨加米哈拉252-5201,日本5号5抗体药物开发系日本日本8全球人畜共患病控制站,全球合作研究与教育机构(GI核)(北海道大学),萨波罗大学060-0808,日本 *通讯:konnai@vetmed.hokudai.ac.jp†这些作者对这项工作同等做出了贡献。
摘要:2型糖尿病(T2D)的复杂发展为研究动物模型中疾病的进展和治疗带来了挑战。新开发的糖尿病大鼠模型,Zucker糖尿病Sprague Dawley(ZDSD)大鼠,与人类T2D的进展紧密相似。在这里,我们检查了雄性ZDSD大鼠T2D和肠道菌群中相关的变化的进展,并测试该模型是否可用于检查潜在疗法的效率,例如益生元,特定寡寡素化的,靶向了gut microbobiota。体重,肥胖,喂养/空腹血糖和胰岛素。葡萄糖和胰岛素耐受性测试,并使用16S rRNA基因测序在8、16和24周龄进行短链脂肪酸和微生物群分析时收集的粪便。在24周结束时,一半的大鼠补充了10%的寡果糖,并重复测试。我们观察到通过恶化的胰岛素和葡萄糖耐受性,从健康/非糖尿病患者到糖尿病前期和公开糖尿病态的过渡,进食/禁食葡萄糖的显着增加,然后显着减少循环胰岛素。与健康和糖尿病前期相比,在公开糖尿病状态下,乙酸和丙酸酯水平显着增加。微生物群分析表明,与糖尿病前和糖尿病态相比,健康型和β多样性的变化以及健康属的变化以及特定细菌属的变化发生了变化。寡聚果糖治疗改善了葡萄糖耐受性,并在晚期糖尿病期间改变了ZDSD大鼠的盲肠菌群。这些发现强调了ZDSD大鼠作为T2D模型的转化潜力,并突出了可能影响疾病发展或作为T2D的生物标志物的潜在肠道细菌。此外,寡果糖处理能够中度改善葡萄糖稳态。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。