在为从事现场污水管理系统的地点评估土壤的个人建立证书时,“土壤分类者”和“土壤科学家”一词应具有相同的含义。土壤分类器被定义为由认可的大学或大学拥有至少具有农学,土壤科学或相关领域专业的科学学士学位的人,并获得了土壤分类器认证咨询委员会的批准。必须在批准的土壤科学课程中至少完成至少30个学期学时或同等的四个小时,其中至少15个学期或同等的四个小时,并且拥有四年的全日制或等效的兼职经验,作为土壤分类器/土壤分类器/土壤科学的科学绘制和分类的土壤和土壤特征和土壤特征,并具有越来越多的土壤作用。必须成功完成书面考试,其中包括有关土壤科学,土壤形态,土壤分类,土壤解释,一般地质,使用和应用该部门土壤表的使用和应用,土壤水流的基本原理和基本化粪池系统吸收设计的基本原理的问题。
使用人尿作为农作物肥料,由于其潜在的好处引起了兴趣,但其应用对尿液如何影响土壤功能和微生物群落有所了解。本研究旨在阐明土壤细菌群落对用人尿液施肥的反应。为此,菠菜作物被2种不同剂量的分离和储存的人类尿液(170 kg n ha-1 + 8.5 kg p ha-1和510 kg n ha-1 + 25.5 kg p ha-1),并与合成受肥(170 kg n ha-h ha-8.5 ka + p ha-5 k p ha-5 k p ha-1)相比根据随机块方案,在温室条件下在四个土壤罐中进行了实验。我们在开始时和土壤和植物特性的开始时评估了尿液和土壤细菌组成的地位,以了解细菌组成变化中的驱动因素。储存12个月后,尿液具有耗尽的微生物组,但仍然含有很少的尿液或粪便菌株。总体而言,土壤细菌群落对尿液施肥有抵抗力,只有3%的分类单元受到影响。然而,与合成肥料相比,尿液受精的硝化和反硝化基团的相对丰度,这意味着在用尿液施肥时可能会发出更多的n 2 o,而无需发出。尿液的高盐浓度对BAC群落几乎没有明显的影响。在更广泛的背景下,该实验提供了证据表明,一年储存的尿液可以应用于植物土壤系统,而不会在短期内对土壤细菌群落产生负面影响。
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
水星(HG)污染是全球问题,因为全球HG的毒性高和广泛的分散。由于人为活动还是自然过程,HG排放量正在稳步增加,在某些地区,水平很高,直接威胁到人类和生态系统健康。然而,细菌和真菌已经响应HG诱导的应激而发展和适应,并开发了耐受性机制,尤其是基于Mer Operon系统,该系统通过HG摄取和通过HG减少反应涉及的MER操纵子系统。其他过程,例如生物蓄积或细胞外隔离,参与HG耐药性,污染土壤的研究允许隔离许多能够具有这些机制的微生物,具有强大的生物治疗方法的潜力。除了在确定生物地球化学周期中汞的命运方面发挥重要作用外,这些微生物确实可以用于降低HG浓度或至少稳定HG以修复受污染的土壤。此外,由于生物技术工具的开发,基于易汞的微生物的生物修复可以优化。最后,这些微生物是生物监测器的相关候选者,例如通过生物传感器的工程化,因为对汞的检测是维护生物健康的主要问题。
抽象的土壤肥力和生产力受到剥削和退化过程的严重影响。这些威胁,再加上人口增长和气候变化,迫使我们寻找创新的农业生态解决方案。益生元是一种土壤生物刺激剂,用于增强土壤条件和植物生长,并可能在碳(C)固存中起作用。与未经处理的土壤或对照(SP)相比,评估了两种商业益生元(分别称为SPK和SPN)(分别称为SPK和SPN)对用Zea Mays L.栽培的农业土壤的影响进行了评估。在两个收获日期进行分析:应用益生元后三周(D1)和十个星期(D2)。测量了植物生长参数和土壤特征,侧重于土壤有机物,土壤细菌和真菌群落,并植物根菌根。关于物理化学参数,两种益生元治疗都会增加土壤电导率,阳离子交换能力和可溶性磷(P),同时降低了硝酸盐。同时,在D2处,SPN处理在升高特定的阳离子矿物质(例如钙(CA)和硼(B))方面是不同的。在微生物水平上,每种益生元都诱导了本地细菌和真菌群落的丰度和多样性的独特转移,这在D2处很明显。这些生物标志物被鉴定为(a)腐生型,(b)植物生长促进性细菌和真菌,(c)内植物细菌以及(d)内生和共生微生物群。该结果反映在处理过的土壤中,尤其是SPN中的肾小球素含量和霉菌化率的增加。同时通过每种益生元治疗招募了特定的微生物分类群,例如来自Spk的Spk的真菌,以及来自Spk的真菌以及Chitinophaga,Neo-os-secet and Bacillie and bacormob and bacorli secors and carlobacter,sphingobium and Massilia,以及来自Spk的真菌和schizothecium carpinicola来自SPN的真菌的细节。我们观察到这些作用导致植物生物量的增加(SPK和SPN的芽分别为19%和22.8%,根分别增加了47.8%和35.7%的干重),并促进了土壤C含量的增加(有机C含量增加了8.4%,总C增加了8.9%),尤其是SPN治疗。鉴于这些发现,施用后十周的使用益生元不仅通过改善土壤特征并塑造其天然微生物群落来增加植物的生长,而且还表明了增强C隔离的潜力。鉴于这些发现,施用后十周的使用益生元不仅通过改善土壤特征并塑造其天然微生物群落来增加植物的生长,而且还表明了增强C隔离的潜力。
“微生物”将极小的生物体与不断进化繁殖的生物体的概念相结合,这是微生物学学科的统一原则。我们的期刊认识到微生物的广泛多样性和相互联系性,并为从事任何原核或真核微生物的高质量基础和应用研究的科学家的原创文章提供了一个先进的出版平台,也为微生物群落的生态学、基因组学和进化研究以及在实验室中探索培养微生物的研究提供了平台。
土地利用从自然生态系统到农田的变化会极大地改变全球土壤的12种,尤其是挑战撒哈拉以南非洲的挑战,并具有快速的人口增长和强化农业。土壤微生物多样性对于支持14个生态系统多功能性和防止病原体生长至关重要。最近的15项研究表明,农业活动使跨16个地点的微生物群落均匀,这可能会导致该规模的功能均匀化。然而,鉴于17微生物功能的冗余,由农场18的功能均质化可能比分类学均质化更广泛。我们比较了19种自然土地和真菌核的分类和功能组成,在肯尼亚和马拉维的范围(〜200 21 m)的天然土地和农田之间的尺度(〜200 21 m)到跨地点(〜1500 km),使用226S rRNA和其基因的散布测序,以及肯尼亚和马拉维的跨站点(〜1500 km)。土壤微生物23功能组成比自然土地比分类学组成的24个单位更广泛地匀浆,这表明在跨尺度上发生了类似的功能性25种对农业的反应,而范围内的范围内则存在不同的分类群。此外,26个环境因素主要影响地点均匀性,而27种耕作本身是跨站点同质性的重要贡献者,这表明与环境变化相比,农业的28个压倒性影响。加法 - 29盟友,致病真菌在农田中相对较丰富,这可能是由于30种诱导的物种竞争和农业引起的环境变化,例如低31个土壤pH。我们的发现强调了在评估土地利用变化对33个土壤健康的影响以制定可持续土地管理策略的影响时,需要调查微生物功能多样性32以及分类学多样性。34
抗菌素抵抗(AMR)构成了关键的全球健康威胁,使全球感染管理变得复杂。关于世界卫生组织(WHO)在2019年释放的抗生素抗药性患病率的数据导致127万人死亡(Murray等,2022; Who,2023)。此外,世界银行估计,到2050年,AMR的经济影响可能会损失高达1万亿美元的医疗保健费用,而到2030年,国内生产总值(GDP)损失了3.4万亿美元(Jonas等人,2017年)。迫切需要发现新药替代耐药性抗生素已变得越来越重要。最大的新抗生素生产商来源之一来自土壤,其中99%的微生物物种。抗菌化合物是由土壤中的微生物产生的,由于传统培养技术的局限性,这些化合物在实验室中通常仍然无法培养,而传统培养技术无法复制微生物的自然栖息地(Choi等,2015; Bhattacharjee,2022222)。具有获取新抗生素剂的巨大潜力的土壤类型是泥炭土(Kujala等,2018; Liu等,2022; Atapattu等,2023)。泥炭土包含富含养分的有机沉积物,这些养分支持微生物生长和多样性(Nawan and Wasito,2020)。必须利用泥炭土中丰富的微生物含量来开发新的抗生素。当前的微生物培养技术通常仅限于微生物的一部分,从而限制了二级代谢产物的分离。克服这些局限性需要创新的方法来培养产生抗生素的微生物,这些微生物在实验室条件下仍然无法养活。未经培养的土壤技术(UST)或原位孵育是最新的发展之一,涉及使用环境中存在的自然生长因子进行培养(Berdy等,2017; Chaudhary等,2019)。
SGS是世界领先的测试,检查和认证公司。我们在115个国家 /地区拥有2500多个实验室和业务设施的网络,并由由99,500名专业专业人员组成的团队支持。凭借超过145年的卓越服务,我们结合了定义瑞士公司以帮助组织实现最高质量,合规性和可持续性标准的精确性和准确性。我们的品牌承诺(当您需要确定时)强调了我们对信任,诚信和可靠性的承诺,使企业能够充满信心地蓬勃发展。我们自豪地通过SGS名称和值得信赖的专业品牌提供专家服务,包括Brightsight,Bluesign,Maine Pointe和Nutrasource。sgs在六瑞士交易所以股票符号SGSN(ISIN CH0002497458,REUTERS SGSN.S,BLOMBERG SGSN:SW)公开交易。