摘要:杂交作为盐度耐受性的玉米育种计划的一部分,可以有助于提高盐水的盈利能力,并减轻盐胁迫对植物的有害影响。本研究旨在评估从基于Griffing的方法I获得的42个F1混合体的生理和谷物产量性能,以开发最佳杂种的初步选择,用于中等盐水,以用于中等盐水,以在墨西哥Yaqui Valley,墨西哥Yaqui Valley中进行未来的研究。这些杂交在适度的盐水条件下,在晶格(7×7)设计中具有四个复制。与植物气体交换有关的六个变量,并评估了谷物产量。ANOVA,当杂种之间发现显着差异时,通过Tukey的事后测试比较了平均值,为1%。Pearson相关性均在所有变量之间估计。大多数变量表现出统计差异,除了叶绿素含量和归一化差异植被指数(NDVI)外。变量中的差异最大的光合作用,蒸腾,用水效率和气孔电导揭示了中等盐度条件下杂种内的遗传变异性。这些结果使我们能够提出具有较高光合作用的混合体(> 27 µmol CO 2 m -2 s -1),中等蒸腾作用(2-3 µmol H 2 O M -2 S -1),高水利用效率(> 8 µmol CO 2 µmol CO 2 µmol H 2 µmol H 2 O M -2 S -2 S -1)和高率(s seline for Selire for Seleter),以适用于SALINE(s)。
Souk Farms Ltd致力于从卢旺达丰富而肥沃的土壤中种植和出口高质量的园艺产品。成为农业行业的关键参与者,我们建立了卓越,可持续性和创新的声誉 分配。此角色对于实现运营目标,保持成本效率以及确保与供应商,内部团队和客户的无缝协调至关重要。职位描述:供应链经理供应链经理将监督和优化整个供应链流程,以确保有效的采购,生产计划,库存管理,物流和分销。此角色对于实现运营目标,保持成本效率以及确保与供应商,内部团队和客户的无缝协调至关重要。关键职责:
摘要 - 组织工程是一个新兴的多学科领域,旨在利用工程和生物学原理修复或替换受损的组织和器官。该领域发展的核心是能够实时监测组织生长。这需要使用需要供电的可植入设备,例如传感器。电池等传统电源可能会阻碍组织生长和组织损伤,因此无线电力传输 (WPT) 成为一种有吸引力的替代方案。本研究深入探讨了用于组织监测的射频无线电力传输的线圈配置的设计和评估。具体来说,对比了两种线圈设计之间的性能指标:一种采用四个圆形线圈,另一种将三个方形线圈和一个圆形线圈混合在一起。分析表明,虽然两种配置的性能都会随着发射器和接收器之间距离的增加而下降,但距离 30 毫米的四个圆形线圈的效率为 25%,三个方形线圈和一个圆形线圈的效率为 45%,而且它们的效率差异很大。圆形线圈具有更高的电力传输效率和生物相容性,而方形和圆形线圈的组合则延长了传输距离。我们的研究结果阐明了线圈设计与 WPT 性能之间的相互作用,为开发用于实时组织生长监测的植入式设备提供了宝贵的见解。这项研究推动了 WPT 的设计工作,并将其定位为伤口愈合、器官移植和药物测试应用的关键参考。
b'Summary抗菌抗菌潜力(EOS)(Basil,Ginger,Hyssop,Caraway,Juniper和Sage)针对三种食物传播细菌病原体,通常是肉类产物污染物(Escherichia Coli,Salmonella enterica enterica and interica enterica and salmonella interica interica interica monicution in Discogen iles),并使用二张蛋白质差异,并使用了二氧化草含量,并使用了二张蛋白质差异。通过气相色谱 - 质谱法(GC-MS)技术确定EOS组成。分析的EO中的主要化合物为:雌激素(在Basil EO中),顺式Pinocamphone(在Hyssop EO中),-pinene(在杜松EO中),-thujone(在Sage EO中),Carvone(Carveone EO)(Caraway EO)和Curcumene(在Ginger Eo中)。罗勒EO抑制了所有测试细菌的生长(椎间盘扩散法)。测试的姜EO浓度缺乏杀菌活性。只有罗勒EO对单核细胞增生李斯特氏菌生长显示抑制作用。与所有经过测试的EO相比,Caraway EO在大肠杆菌和肠肠链球菌上具有最高的抗菌作用。对于所有测试细菌,罗勒和鼠尾草EOS的最小抑制浓度(MIC)为56.8 \ XC2 \ XB5L/ML。Hyssop,香菜和杜松EOS在所有测试的细菌物种上以113.6 \ XC2 \ XB5L/ml的浓度抑制。对于大肠杆菌和L.单核细胞增生剂,生姜EO的MIC为113.6 \ XC2 \ XB5L/ML,而S. enterica则为227.3 \ XC2 \ XB5L/ml。对于所有研究的细菌,罗勒和鼠尾草EOS的最小bacte- ricidal浓度(MBC)为113.6 \ xc2 \ xb5l/ml。Hyssop,Caraway和Juniper EOS的MBC的MBC为所有投资细菌的227.3 \ XC2 \ XB5L/ML。对于大肠杆菌和L.单核细胞增生菌,XC2 \ XB5L/ML为227.3 \ XC2 \ XB5L/ML,而S. enterica则为454.5 \ XC2 \ XB5L/ML。测试的EO具有巨大的抗细菌防腐剂的潜力。”
1。引言在植物培养中获得高质量和高收率是由许多因素决定的,其中最重要的是肥料(Azadi等,2022; Lavic等,2023)。使用矿物质肥料会导致高收益的增加,但它会不利地影响土壤的物理,化学和生物学特性,并导致土壤污染和效率低下(Uyanöz等,2004; Jia等,2022)。由于全世界人口的迅速增长和Türkiye,化学肥料被广泛而无意间用于从单位区域获得额外的收益率。结果,人类健康恶化,环境污染发生。考虑到这些缺点,有机起源的肥料用于可持续农业(Altindag等,2006; Channabasana等,2008; Erturk等,2012; Naghman等,2023)。
8.1 Introduction 285 8.2 Direct (shallow) foundations 285 8.2.1 Solutions to foundations on residual soils – factors that affect the concept 285 8.2.2 Particular conditions in residual soils 285 8.2.3 Main demands for the guarantee of structural limit state conditions 291 8.3 Foundations on unsaturated soils 328 8.3.1 Shallow foundations on collapsible soils 329 8.3.2 Deep foundations on collapsible soils 331 8.3.3 Mitigation measures 336 8.3.4 Recent research and developments for dealing with collapsible soils 336 8.3.5 Shallow foundations on expansive soils 337 8.3.6 Characterisation by swell strains 339 8.3.7 Types of foundation that are used in expansive soils 341 8.3.8 Mitigation and preventive measures 343 8.3.9 Case histories 346 8.4 Indirect (Deep) foundations 350 8.4.1 General concepts 350 8.4.2桩设计354参考400标准,政府和官方出版物410参考书目411
于2023年开业,Vineland的新修复的Jordan Building是工厂回应和环境团队的动态枢纽,其特色是办公室和尖端的实验室空间。此升级的设施大大提高了Vineland的研究能力,其中包括两个完全关注土壤和底物分析的最先进的实验室。在过去的一年中,该空间具有用于室内草莓生产的最佳最佳基材混合物,评估了果园实践对土壤健康和碳储存的影响,并研究了在土壤和底物中有效使用各种有机废物。除了确定蔬菜清洁过程中蔬菜和土壤废物的最佳用途外,还在使用生物刺激剂来减少合成肥料的进一步研究。这些举措强调了Vineland在支持园艺行业,中小型企业和政府方面的关键工作,以开发解决方案,促进创新和提前商业化。
该计划中的应用和注册没有最低或最大的面积要求,农场规模也不是项目选择的标准。资金可用于支持保护惯例,包括购买设备,以支付适当的员工和行政时间,并支付研究费用。没有申请文件中概述的与项目无关的间接费用或间接资金。此赠款机会并非旨在作为农场运营的初创资金或组织运营预算的来源。该赠款可用于支持和扩展通过土壤保护区(SCD)和自然资源保护服务(NRCS)提供的计划;但是,这些资金不可用来支付相同英亩的相同做法。任何提议的预算项目都必须在申请的叙述部分中清楚地解释和合理。
用于确定TOC的系统参数,应用了TOC差异方法。TOC等于TC和TIC之间的差异:TOC = TC - TIC。因此,必须确定每个样品的TC和TIC。通过使用“自动”和自动固体Sampler FPG 48的多EA 4000 C进行了两项测量。根据分析使用两个称重样品等分试样。用40%H 3 PO 4自动将第一个样品等分试样自动酸化,释放了来自碳酸盐的CO 2,并直接测量了TIC。使用第二艘船,将第二个样品等分试样引入1,200°C的电阻炉中,并在纯氧气中完全消化。在两种运行中,测量气体均干燥并清洁,并通过NDIR光谱法测量碳含量。TOC的计算是由设备的多翼软件自动执行的。