最近已经证明,激光可能会产生具有相干性(量化为光谱峰处的平均光子数)的固定光束,该光束缩放为激光器中存储的平均激发数的第四幂,这比标准或schawlow-limtlate limatation the the the the the激励数量。,nat。物理。17,179(2021)]。此外,在分析上证明,这是CW激光器定义条件下的最终量子限制(海森堡极限)的缩放,以及关于输出光束的性质的强有力的假设。在我们的相关工作中[Ostrowski等。,物理。修订版Lett。 130,183602(2023)]我们表明,后者可以被较弱的假设所取代,该假设允许高度亚dososonian输出梁,而无需更改上限尺度或其可实现性。 在本文中,我们提供了相关论文中给出的计算的详细信息,并介绍了三个激光模型家族,这些模型可能被认为是该工作中介绍的模型的概括。 这些激光模型中的每个家族都由一个实数P = 4对应于原始模型的实际数字P = 4。 这些激光家族的参数空间进行了数值研究,我们在其中探讨了这些参数对激光束相干性和光子统计的影响。 可以根据P的选择来识别两个不同的连贯性方案,在P> 3中,每个模型都表现出Heisenberg-Limimimited Beam的连贯性,而对于P <3,Heisenberg极限不再达到。 15,而不是p = 4。Lett。130,183602(2023)]我们表明,后者可以被较弱的假设所取代,该假设允许高度亚dososonian输出梁,而无需更改上限尺度或其可实现性。在本文中,我们提供了相关论文中给出的计算的详细信息,并介绍了三个激光模型家族,这些模型可能被认为是该工作中介绍的模型的概括。这些激光模型中的每个家族都由一个实数P = 4对应于原始模型的实际数字P = 4。这些激光家族的参数空间进行了数值研究,我们在其中探讨了这些参数对激光束相干性和光子统计的影响。可以根据P的选择来识别两个不同的连贯性方案,在P> 3中,每个模型都表现出Heisenberg-Limimimited Beam的连贯性,而对于P <3,Heisenberg极限不再达到。15,而不是p = 4。此外,在以前的政权中,我们得出了与数字一致的这三个激光家族中每个激光族的光束相干性的公式。我们发现最佳参数实际上是p≈4。
分散的学习(DL)启用与服务器的协作学习,而无需培训数据,可以使用户的设备留下。但是,DL中共享的模型仍然可用于推断培训数据。传统的防御措施,例如差异隐私和安全汇总在有效地保护DL中的用户隐私方面缺乏牺牲模型效用或效率。我们介绍了Shatter,这是一种新颖的DL方法,其中节点可以创建虚拟节点(VN S)代表他们传播其完整模型的块。这通过(i)防止攻击者从其他节点收集完整模型,以及(ii)隐藏产生给定模型块的原始节点的身份。从理论上讲,我们证明了破碎的收敛性,并提供了正式的分析,揭示了与在节点之间交换完整模型相比,Shatter如何降低攻击的效力。我们评估了与现有DL算法,异质数据集的融合和攻击弹性,并与三个Standard隐私攻击进行评估。我们的评估表明,破碎不仅使这些隐私攻击在每个节点运行16个VN时不可行,而且与标准DL相比,对模型实用程序产生了积极影响。总而言之,Shatter在保持模型的效用和效率的同时,增强了DL的隐私。
鉴于数据量的越来越多,有一个显着的研究重点是硬件,可提供低功耗的高计算性能。值得注意的是,神经形态计算,尤其是在利用基于CMO的硬件时,已经表现出了有希望的研究成果。此外,越来越强调新兴突触设备(例如非挥发性记忆(NVM)),目的是实现增强的能量和面积效率。在这种情况下,我们设计了一个硬件系统,该硬件系统采用了1T1R突触的一种新兴突触。Memristor的操作特性取决于其与晶体管的配置,特别是它是位于晶体管的源(MOS)还是排水口(MOS)。尽管其重要性,但基于Memristor的操作电压的1T1R配置的确定仍然不足以在现有研究中探索。为了实现无缝阵列的扩展,至关重要的是要确保单位单元格适当设计以从初始阶段可靠地操作。因此,对这种关系进行了详细研究,并提出了相应的设计规则。香料模型。使用此模型,确定最佳晶体管选择并随后通过仿真验证。为了证明神经形态计算的学习能力,实现了SNN推理加速器。此实现利用了一个基于在此过程中开发的验证的1T1R模型构建的1T1R数组。使用降低的MNIST数据集评估了精度。结果证明了受大脑功能启发的神经网络操作成功地在高精度而没有错误的硬件中实现。此外,在DNN研究中通常使用的传统ADC和DAC被DPI和LIF神经元取代,从而实现了更紧凑的设计。通过利用DPI电路的低通滤波器效应来进一步稳定该设计,从而有效地降低了噪声。
依赖于金属绝绝构成结构设备中电阻开关现象的两末端回忆设备最近引起了人们对实现下一代记忆和神经形态架构的极大关注。[1-4]的身体机制取决于电化学效应和纳米离子工艺涉及金属原子溶解在电芯片中溶解的金属溶解的金属活性电极,并导致金属群体在互联网中的转变,以使得Metal the Is condrative the Is the Is the Is the Is the Metallix the Mentals Ondallic the Mentals the Mentals contallic contallix contallix contallix contallix contallix contallix contallix的迁移。[5,6]先前的报道表明,电阻开关机制受外在影响的强烈影响,例如存在可以扩散并吸附在绝缘基质中的水分。[7,8,17,18,9-16]在术语中,水分对电阻切换细胞功能的影响被观察到取决于所涉及材料的特定化学/结构特性。[7]在金属氧化物中,半导体ZnO被广泛利用为用于实现电子设备的活性材料。由于其特殊的光子,机械和电子特性以及生物相容性和环保性特征,ZnO也被认为是广泛应用的有前途的候选人,包括现场效应晶体管,压电电透射器,光伏,传感器,传感器和照片检测器。[19-24]也,对ZnO的兴趣与具有多种形态的可能性有关,包括纳米线,纳米棒,纳米生物和纳米片。[25,26]在此框架中,在包括纳米线/纳米棒在内的ZnO纳米结构中观察到了电阻性开关现象,[27-29]纳米岛[30],以及在具有不同沉积技术的广泛薄膜中。[31,32,41,33-40],在电阻开关设备领域,由于其高透明度可见光,[37-39]也充分利用了其辐射硬度,因此非常感兴趣地致力于ZnO。[42]
基于得分的生成模型(SGM)旨在通过仅使用来自目标的噪声扰动样本来学习得分功能来估算目标数据分布。最近的文献广泛地集中在评估目标和估计分布之间的误差上,从而通过Kullback-Leibler(KL)Divergence和Wasserstein距离来测量生成质量。在对数据分布的轻度假设下,我们为目标和估计分布之间的KL差异建立了上限,这取决于任何依赖时间依赖的噪声时间表。在额外的规律性假设下,利用了有利的潜在收缩机制,与最新结果相比,我们提供了瓦斯坦斯坦距离的更严格的误差。除了具有易处理外,该上限还结合了在训练过程中需要调整的目标分布和SGM超参数的特性。最后,我们使用模拟和CIFAR-10数据集1通过数值实验来说明这些边界,并在参数族中识别最佳的噪声时间表范围。
在获取磁共振(MR)图像中,较短的扫描时间会导致更高的图像噪声。因此,使用深度学习方法自动图像降解是高度兴趣的。在这项工作中,我们集中于包含线状结构(例如根或容器)的MR图像的图像。特别是,我们研究了这些数据集的特殊特征(连接性,稀疏性)是否受益于使用特殊损失功能进行网络培训。我们特此通过比较损失函数中未经训练的网络的特征图将感知损失转换为3D数据。我们测试了3D图像降级的未经训练感知损失(UPL)的表现,使MR图像散布脑血管(MR血管造影-MRA)和土壤中植物根的图像。在这项研究中,包括536个MR在土壤中的植物根和450个MRA图像的图像。植物根数据集分为380、80和76个图像,用于培训,验证和测试。MRA数据集分为300、50和100张图像,用于培训,验证和测试。我们研究了各种UPL特征的影响,例如重量初始化,网络深度,内核大小以及汇总结果对结果的影响。,我们使用评估METIC,例如结构相似性指数(SSIM),测试了四个里奇亚噪声水平(1%,5%,10%和20%)上UPL损失的性能。我们的结果与不同网络体系结构的常用L1损失进行了比较。我们观察到,我们的UPL优于常规损失函数,例如L1损失或基于结构相似性指数(SSIM)的损失。对于MRA图像,UPL导致SSIM值为0.93,而L1和SSIM损耗分别导致SSIM值分别为0.81和0.88。UPL网络的初始化并不重要(例如对于MR根图像,SSIM差异为0.01,在初始化过程中发生,而网络深度和合并操作会影响DeNo的性能稍大(5卷积层的SSIM为0.83,而核尺寸为0.86,而5卷积层的0.86 vs. 0.86对于根数据集对5卷积层和5卷积层和内核尺寸5)。我们还发现,与使用诸如VGG这样的大型网络(例如SSIM值为0.93和0.90)。总而言之,我们证明了两个数据集,所有噪声水平和三个网络体系结构的损失表现出色。结论,对于图像
➢教育目标,需要在许可级别进行监督,招募人员应该能够在地球和环境科学,正在进行的地球和环境科学中教授房间,但也可以在现场教授。她或他还将从Stepe大师进行专业课程,尤其是M1“Géovensourcesfor Envorianct and Energy Transition”和M2“水文和水文学”,“能源过渡的沉积盆地”和“环境和地理工程”。一般而言,招聘或招聘将在地球科学,监视和监督学生的情况下加强部门的数学和物理工具,计算,数据处理和开放科学的课程。此外,他或他将不得不表现出对该领域地质课程的胃口,以及在虚拟地质学或数字露头工具的教义中进行新的教育方法。
注册条例➢培训部门涉及在奥赛科学学院的所有领域教授物理学,从许可证到主人。➢教育目标,监督和责任需求。招募的候选人将通过与从L1到M2的不同级别的学生一起参加培训,并以更加准时的方式,在Polytech Paris-Saclay的工程师周期中,将参与奥赛科学学院的教学。招聘人员将不得不展示他在教训的发展和组织中的活动,教学领域的动画以及教育项目的管理。,他将在凝结物质和相关量子现象的教义的发展和组织中发挥驱动作用,并且必须在巴黎 - 萨克莱大学的组织中承担责任。研究巴黎 - 萨克莱大学希望招募一名教师,以开发量子材料的原始电子,磁性,光学,光学或旋转特性的探索和理解的理论或实验方法。可以通过电子带的拓扑,强电子相关性,超导性,自旋轨道相互作用,自旋传输的物理或降低异性关键或异性关注或接口的尺寸来引起原始行为的出现。她将不得不提出一个结构化研究项目,并与接待实验室的策略一致。这些现象产生了新的概念,并为量子技术在信息或能量领域的未来应用开辟了观点。招聘人员将不得不在量子凝结物理学中展示运动研究活动,并在国际层面得到认可。关键字量子,电子相关,拓扑,自旋,能量和信息技术的材料,超导性,低维,量子相干性。
基于数据同化和机器学习的组合是一种新颖的方法。新的混合方法是为两个范围设计的:(i)模拟隐藏的,可能是混乱的,动态的,并且(ii)预测其未来状态。该方法在于应用数据同化步骤,在这里进行集合Kalman滤波器和神经网络。数据同化用于最佳地将替代模型与稀疏嘈杂数据相结合。输出分析在空间上完成,并用作神经网络设置的训练来更新替代模型。然后迭代重复两个步骤。数值实验是使用混乱的40变量Lorenz 96模型进行的,证明了所提出的杂种方法的收敛和实用技能。替代模型显示出短期的预测技能,最多两次Lyapunov时,检索正lyapunov指数以及功率密度频谱的更伟大的频率。该方法对关键设置参数的敏感性也会显示:预测技能会随着观察噪声的增加而平稳降低,但如果观察到少于模型域的一半,则突然下降。数据同化与机器学习之间的成功协同作用在这里通过低维系统证明,鼓励对具有更复杂动力的此类混合体进行进一步研究。
推荐系统已成为在线服务的组成部分,因为它们能够帮助用户在数据海中找到特定信息。但是,现有的研究表明,某些推荐系统容易受到中毒攻击的影响,尤其是涉及学习方案的攻击。中毒攻击是对手对训练模型进行精心制作的数据的注射,目的是操纵系统的建议。基于人工智能的最新进展(AI),此类攻击最近变得重要。目前,我们还没有关于对手为何进行这种攻击的原因,也没有全面了解这种攻击会破坏模型或可能产生的影响的全部能力。虽然已经开发了许多中毒攻击的对策,但它们尚未系统地与攻击的特性联系在一起。因此,评估缓解策略的各自的风险和潜在成功是DIICULT,即使不是不可能。这项调查旨在通过主要专注于中毒攻击及其对策来造成这一差距。这与主要关注攻击及其检测方法的先前调查相反。通过详尽的文献综述,我们为中毒攻击,形式化其维度提供了一种新颖的分类法,并因此组织了文献中描述的31次攻击。此外,我们审查了43个对策,以检测和/或防止中毒攻击,评估其针对特定类型攻击的效率。