在两个空间维度中,准长范围超导的熔化是通过涡流 - 抗抗反应对的增殖和解开,这是一种被称为Berezinskii-Kosterlitz-kosterlitz-thoubles-thouble(bkt)的现象。尽管已经在大量测量中观察到了这种过渡的特征,但是这些实验通常是复杂的,模棱两可的,无法解决涡流解开过渡的丰富物理。在这里,我们表明局部噪声磁力测定法是一种灵敏的无创探针,可以提供有关比例依赖性涡流动力学的直接信息。尤其是通过解决磁噪声的距离和温度依赖性,可以实验研究涡流气体的重新归一化组流程,并跟踪原位涡旋的发作。特别是,我们预测(i)噪声对温度的非单调依赖性和(ii)局部噪声几乎与BKT转变处的样品 - 探针距离无关。我们还表明,噪声磁力测定法可以区分高斯超导订单参数的流量与拓扑涡流闪光,并可以检测到未结合的涡流的出现。BKT过渡时的弱距离依赖性也可以用来将其与准粒子背景噪声区分开。我们的预测可能在许多非常规超导体的实验范围内。
6. 顾客和停车场 顾客噪音是个棘手的问题,离开嘈杂场所的人经常在外面继续以相同的音量说话,这可能会令人感到不安。顾客聚集在外面吸烟、使用手机或试图隔着窗户与场所内的朋友交谈可能会造成问题。应警告特别扰乱秩序的顾客,并引入“三振出局”排除政策。停车场是另一个需要偶尔监督和检查的区域,特别是在深夜,这可能有助于防止闲逛、聊天或不顾他人感受和吵闹的驾驶行为。应考虑设置标志,强调不要大喊大叫、猛关车门、鸣喇叭、大声使用汽车音响和反社会行为。
噪声中型量子 (NISQ) 设备缺乏错误校正,限制了量子算法的可扩展性。在这种情况下,数模量子计算 (DAQC) 提供了一种更具弹性的替代量子计算范式,它通过将单量子位门的灵活性与模拟的稳健性相结合,表现优于数字量子计算。这项工作探讨了噪声对数字和 DAQC 范式的影响,并证明了 DAQC 在缓解错误方面的有效性。我们比较了超导处理器中各种单量子位和双量子位噪声源下的量子傅里叶变换和量子相位估计算法。DAQC 在保真度方面始终超越数字方法,尤其是随着处理器尺寸的增加。此外,零噪声外推通过减轻退相干和固有误差进一步增强了 DAQC,对于 8 量子位实现了 0.95 以上的保真度,并将计算误差降低到 10 −3 的数量级。这些结果证实了 DAQC 是 NISQ 时代量子计算的可行替代方案。
摘要目的——地面振动测试对于飞机设计和认证至关重要。快速松弛矢量拟合 (FRVF) 和 Loewner 框架 (LF) 最近扩展到机械系统中的模态参数提取,以解决时间和频域技术的计算挑战,用于航空相关结构的损伤检测。设计/方法/方法——FRVF 和 LF 应用于数值数据集以评估噪声稳健性和损伤检测性能。还评估了计算效率。此外,它们还应用于一种新的高纵横比机翼损伤检测基准,将其性能与最先进的方法 N4SID 进行比较。结果——FRVF 和 LF 可有效检测结构变化;LF 表现出更好的噪声稳健性,而 FRVF 的计算效率更高。实际意义——建议在有噪声的测量中使用 LF。原创性/价值——据作者所知,这是首次应用 LF 和 FRVF 提取航空相关结构中的模态参数的研究。此外,还介绍了一种新型高纵横比机翼损伤检测基准。
我们报告了金纳米粒子 (AuNP) 修饰的石墨烯-硅肖特基势垒二极管的电流-电压特性和低频噪声的结果。测量在环境空气中添加两种有机蒸气四氢呋喃 [(CH 2 ) 4 O; THF] 和氯仿 (CHCl 3 ) 中的任一种进行,以及在黄光照射 (592 nm) 期间进行,接近测量的金纳米粒子层的粒子等离子体极化频率。当加入四氢呋喃蒸气时(在金修饰的石墨烯-硅肖特基二极管中),我们观察到正向电压 (正向电阻区域) 的直流特性发生变化,而当添加氯仿时(在未修饰的石墨烯-硅肖特基二极管中),在黄光照射下会发生微小的变化。与无照射相比,在黄光照射期间观察到两种气体的低频噪声差异明显较大。与没有 AuNP 层的石墨烯-Si 肖特基二极管相比,AuNP 抑制了噪声强度。我们得出结论,所研究的金装饰肖特基二极管产生的闪烁噪声可用于气体检测。
建筑噪声章程豁免请求:新威斯敏斯特拦截器 - 哥伦比亚街下水道维护项目建议,向大温哥华大都会承包商RAM咨询豁免6063,1992,从9:00 pm到7:00 AM连续三个晚上,包括2024年10月1日(星期二)至2024年10月10日,星期四,不包括周六,周日和法定假期,以进行CCTV,以进行新的Westminster Interpector Interpector Interpector下水道的CCTV检查。 目的本报告的目的是要求豁免施工噪声章程编号6063,1992,从9:00 pm到7:00 AM连续三个晚上,包括2024年10月1日(星期二)至2024年10月10日,星期四,不包括周六,周日和法定假期,以进行CCTV,以进行新的Westminster Interpector Interpector Interpector下水道的CCTV检查。目的本报告的目的是要求豁免施工噪声章程编号6063,1992向大温哥华大都会承包商RAM Consulting进行预防性检查,沿100街区到哥伦比亚街800号街区的下水道线。背景新的威斯敏斯特拦截器下水道将废水从本那比和新威斯敏斯特移动到安纳西斯岛废水处理厂。本报告中描述的性质的预防性工作支持下水道线的持续维护,目的是避免对附近居民和企业的未来失败。分析拟议的工作包括沿哥伦比亚街沿临时提起维护孔盖的机组人员,以方便访问最近完成的下水道升级。a
概率机器学习利用可控的随机性来编码不确定性并启用统计建模。利用量子真空噪声的纯粹随机性,这是由于电磁磁场的流动,已经对高速和能量的随机光子元素表现出了希望。尽管如此,可以控制这些随机元素以编程可能的机器学习算法的光子计算硬件受到限制。在这里,我们实现了由可控的随机光子元件组成的光子概率计算机 - 光子概率神经元(PPN)。我们的PPN在带有真空级注入偏置的偏见的双态光学参数振荡器(OPO)中进行。然后,我们使用电子处理器(FPGA或GPU)进行了一个测量和反馈循环,以解决某些概率机器学习任务。我们展示了MNIST手写数字的概率推断和图像生成,它们是判别和生成模型的代表性示例。在两个实现中,量子真空噪声都用作随机种子来编码样品的分类不确定性或概率生成。此外,我们为通向全光概率计算平台的路径提出了一条路径,估计的采样速率约为1 Gbps,能源消耗约为5 FJ / MAC。我们的工作为可扩展,超快和能量良好的概率机器学习硬件铺平了道路。
I.简介阶段同步是5G新无线电(NR)毫米波(MMWave)通信系统性能的关键组成部分。准确的相位同步对于保持通信的可靠性和效率至关重要,尤其是在MMWave频段内,通常从24 GHz到100 GHz。这些高频带实现了前所未有的数据速率和带宽,这对于满足对高速无线连接的需求不断增长至关重要。5G-NR的演变在很大程度上依赖于MMWave技术来提供增强的移动宽带服务,超可靠的低潜伏期通信和大规模的机器型通信,从而解决了传统频带的容量限制[1-3]。但是,5G-NR MMWAVE网络的部署伴随着重大挑战,尤其是在相位误差的准确估计和补偿中。这些错误来自各种来源,包括振荡器缺陷,通道效应和硬件障碍,所有这些都会引起常见相位误差(CPE)。CPE估计和补偿对于确保MMWave系统中可靠的通信至关重要,因为即使是较小的相位偏差也会大大降低系统性能,从而导致错误率提高和信号质量降低[4]。
语音情感识别(SER)是任何人类机器相互作用的必不可少的组成部分,并启用构建善解人意的语音用户界面。在与基于语音的呼叫中心(基于语音的呼叫中心)一样,当一个人与机器或代理互动时,在嘈杂环境中准确识别情绪的能力在实践场景中很重要。在本文中,我们提出了基于加强学习(RL)的数据增强技术,以构建强大的SER系统。RL中使用的奖励函数启用选择性噪声分布在不同的频带上以进行数据增强。我们表明,所提出的基于RL的增强技术优于最近提出的基于随机选择的技术,用于噪声稳健的SER任务。我们将IEMOCAP数据集与四个情绪类别类别一起验证所提出的技术。更重要的是,我们在跨语料库和跨语言场景中测试SER系统的噪声稳健性。索引术语:语音情绪识别,稳健性,选择性数据增强,强化学习。
l天是ISO 1996-2中定义的A加权长期平均声音水平,在一年中的所有一天中确定。12小时的白天期间为07:00至19:00小时。l晚上是ISO 1996-2中定义的A加权长期的平均声音水平,在一年的所有晚上确定。4小时的傍晚时期在19:00至23:00小时之间。l Night是ISO 1996-2定义的A加权长期平均声音水平,在一年的所有夜晚确定。8小时的夜间时间在23:00至07:00小时之间。2.6调查程序噪声测量是根据ISO 1996中包含的指南进行的:声学 - 描述测量和评估以及环境噪声。第1部分:基本数量和评估程序(2016年)和第2部分:确定声压水平(2017)。
