铁凋亡是一种以氧化应激和铁依赖性方式调节细胞死亡的新兴形式,主要是由活性氧(ROS)过量产生引起的。操纵铁铁作用已被认为是抑制肝肿瘤生长的有前途的治疗方法。然而,肝癌抗铁毒性的抗性发展在癌症治疗中构成了重大挑战。翻译后修饰(PTMS)是关键的酶促催化反应,可以共价调节蛋白质构象,稳定性和细胞活性。此外,PTM在各种生物学过程中扮演关键作用,并在包括铁质吞噬作用的各种生物学过程中发挥作用。重要的是,与铁凋亡有关的关键PTM调节剂已被确定为癌症治疗的潜在靶标。近年来,已经对两种蛋白质SLC7A11,SLC7A11,GPX4的PTMS功能进行了广泛研究。本综述将总结PTM在肝细胞相关蛋白中在肝细胞癌(HCC)治疗中的作用。
这些方案是在患者对治疗没有反应并出现病毒学失败时开始的。如果怀疑出现这种情况,应与专家密切协调治疗患者,并且必须将血液样本送至 RITM 进行 HIV 药物耐药性检测,然后才能转为二线治疗。
评论CRISPR的生物伦理问题:一种基因组编辑技术Ashima Bhan,Satish Sasikumar,Arvind Goja,Rajendra TK Genetics and Molecular Biologary Lim,D。Y. Patil Biotechnologicy and BiioInformatics D. Y. Patil Vidyapeeth博士,D。通讯作者:Ashima Bhan。电子邮件 - ashimabhan@gmail.com摘要生物技术领域的最新和重大科学成就是CRISPR的发现(聚集了定期散布的短篇小说重复序列)。crispr已成为最现代,最受欢迎的工具之一,这主要是由于其低成本和效率,可用于编辑基因组。因此,这项技术几乎是生物医学和农业科学的每个维度的关键,并且在治疗病毒感染,血友病,癌症和遗传遗传异常方面具有潜在的应用。但是,当这种用于编辑基因的技术不公平地用于改善生物学特征时,道德问题可能会出现,这仅仅是出于美学的目的或比人群中其他人的优势。这不仅会导致社会歧视和动荡,而且有可能改变生物的进化进化。在这方面,应制定对CRISPR技术,风险评估,政策和程序的监管实施,以防止严重滥用这项技术。关键词:生物伦理学,生物技术,CRISPR,进化,优生学,基因编辑
执行摘要在过去十年中,储能技术(主要是锂离子电池储能系统(BES))的成本迅速下降,预计在未来十年内将进一步下降(Bloombergnef 2019)。这是在将电网灵活性视为可靠操作并集成大量可再生能源(RE)的必要资源的时候。在印度,灵活性被称为“使用能源的新货币”(Soonee and Kumar 2020)。能源存储具有提供一些网格灵活性的技术潜力。然而,关于印度和其他南亚国家(包括孟加拉国,不丹和尼泊尔)的储能机会的问题仍然存在。不确定性仍然存在有关技术成本的不确定性,以及有关存储运营,所有权和补偿机制的规则。
• The Realities of the Energy Transition • The Role for Hydrogen in the Energy Transition • The Role of Renewables and Other Energy Sources • The Future Markets for Petrochemicals and Refineries of the Future • Circular Economy - Consumerism & Industry Responses • Emission Reduction - Carbon Dioxide Utilisation (CCUS) • Driving Innovation in a Net Zero World: Key Challenges in R&D • Digital Transformation on the Route to Net Zero • Dialogue on the Energy Future • Dialogue on Energy Security • Alleviating Energy Poverty – Industry Responses for Providing Access to Energy • Access to Capital and Innovative Business Models • Raising Finance during the Energy Transformation – an Investor-Industry Dialogue • Climate Solutions from the Oil and Gas Industry • Untapped Reserves – Driving Diversity in Oil and Gas • Diversity and Inclusion – Focus on Indigenous People • WPC Youth Session - Securing the Next Generation for our Industry • Social责任 - 赢得经营许可
摘要:黑洞信息之谜源于广义相对论与量子理论对黑洞辐射性质的结论存在差异。根据霍金最初的论证,辐射是热的,因此其熵会随着黑洞的蒸发而单调增加。相反,由于量子理论中时间演化的可逆性,辐射熵应该在一定时间后开始减小,正如佩奇曲线所预测的那样。基于复制技巧的新计算证实了这种减小,并揭示了其几何起源:复制品之间形成的时空虫洞。在这里,我们从量子信息论的角度分析了这些结论与霍金最初结论之间的差异,特别是使用了量子德菲内蒂定理。该定理意味着存在额外的信息 W,它既不是黑洞的一部分,也不是辐射的一部分,而是起着参考的作用。通过复制技巧获得的熵可以被识别为以参考 W 为条件的辐射的熵 S ( R | W ),而霍金的原始结果对应于非条件熵 S ( R )。熵 S ( R | W ) 在数学上是集合平均值,在对 N 个独立准备的黑洞进行实验时,它获得了操作意义:对于较大的 N ,它等于它们联合辐射的归一化熵 S ( R 1 · · · RN ) / N 。这个熵和 S ( R ) 之间的差异意味着黑洞是相关的。因此,复制虫洞可以被解释为这种相关性的几何表示。我们的结果还表明广泛使用的随机幺正模型可以扩展到多黑洞,我们通过非平凡检验支持了这一点。
抽象的理由合成阿片类药物(如芬太尼)有助于阿片类药物使用障碍和药物过量死亡的率提高。睡眠功能障碍和昼夜节律破坏在阿片类药物戒断期间可能会恶化。严重和持续的睡眠和昼夜节律改变是阿片类药物渴望和复发的推定因素。然而,关于芬太尼对睡眠结构和睡眠效果周期的影响,尤其是阿片类药物的戒断,知之甚少。此外,昼夜节律调节睡眠 - 摩擦周期和昼夜节律转录因子,神经元PAS结构域2(NPAS2)参与了睡眠结构和药物奖励的调节。在这里,我们研究了NPAS2在芬太尼诱导的睡眠改变中的作用。确定芬太尼给药和退出对睡眠结构的影响的目标,以及NPAS2作为芬太尼引起的睡眠变化的一个因素。方法脑电图(EEG)和肌电图(EMG)用于测量基线时在基线时和急性和慢性芬太尼在野生型和NPAS2缺乏的雄性小鼠中的急性和慢性芬太尼时测量非比型眼运动睡眠(NREMS)和快速眼动睡眠(REMS)。结果芬太尼的急性和长期给药导致野生型和NPAS2缺陷型小鼠的唤醒和唤醒增加,这种作用在NPAS2缺陷型小鼠中更为明显。慢性芬太尼给药导致NREM降低,在退出期间持续存在,从退出的第1天逐渐减少。在NPAS2缺陷型小鼠中,芬太尼对NREM和唤醒的影响更为明显。结论慢性芬太尼破坏了NREM,导致随后退出的几天内逐渐丧失NREM。NPAS2的丧失加剧了芬太尼对睡眠和唤醒的影响,揭示了昼夜节律转录因子在阿片类药物引起的睡眠变化中的潜在作用。NPAS2的丧失加剧了芬太尼对睡眠和唤醒的影响,揭示了昼夜节律转录因子在阿片类药物引起的睡眠变化中的潜在作用。
用于治疗 COVID-19 的药物研究仍然具有挑战性。SARS-CoV-2 通过血管紧张素转换酶 (ACE2) 受体进入人体。SARS-CoV-2 的 S(刺突)蛋白结构与 ACE2 受体的活性位点相互作用,该活性位点定义为肽酶结构域,由 Gln24、Asp30、His34、Tyr41、Gln42、Met82、Lys353、Arg357 组成。这项工作研究了三种喹啉类抗疟药物与 ACE2 受体肽酶结构域的相互作用。从蛋白质数据库下载了人 ACE2 受体的 X 射线晶体结构。使用 MarvinSketch 构建配体,并使用 LigandScout 中的 MMFF94 进行几何优化。能量最小化的配体对接至 ACE2 受体的肽酶结构域。结果表明,氯喹、羟氯喹和奎宁可以与 ACE2 受体肽酶结构域中的氨基酸残基相互作用。在这三种化合物中,奎宁对 ACE2 受体的亲和力最强(-4.89 kcal/mol),其次是羟氯喹(-3.87 kcal/mol)和氯喹(-3.17 kcal/mol)。总之,奎宁、氯喹和羟氯喹可以通过与 ACE2 受体肽酶结构域中的 Lys353 残基相互作用来阻断 SARS-CoV-2 病毒的感染,因此有可能用作 COVID-19 解毒剂。这项研究将为喹啉类抗疟药物抑制 SARS-CoV-2 病毒感染的机制提供更多见解。关键词:ACE2 受体,COVID-19,氯喹,羟氯喹,奎宁,SARS-CoV-2
受托人监测 RAG ● 每学期审查战略计划 ● 每学期校长报告 ● 匿名 TOT ● 匿名 Perf 管理计划 ● ISP 数据 ● 领导与管理链接访问 ● 顾问访问记录 ● 进行并分享员工调查 实施 - 我们将要做什么 谁 何时 资源 ARU CPD 发生以设置和支持流程 - 员工会议和培训日 EC 秋季 1 教师 CPD 计划与整个学校目标和评估相关 EC 助教的每学期 CPD 计划包括法定和整个学校目标重点会议 EC 每学期 助教得到支持以完成 HLTA 资格 EC/AHT 正在进行中 新的 ECT 导师有 CPD EC 秋季和夏季 新的入职领导有其角色的 CPD EC 每学期 ECT 完成入职和 ECT 框架,包括释放和指导 EC/AHT 正在进行 TOT 审查,助教评估和增长计划得到支持和时间表 EC/AHT 十月、二月 进行员工 CPD 调查 EC 春季学期
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,则使用记录页面上找到的永久性URI(句柄)来引用TSPACE版本。