52-02-78-00113 ARUN KC 档 7 52-02-75-03501 Raj Thapa 档 8 52027805207 BHUPESH KC 档 9 52067700523 Ganesh pun 档 10 52-02-76-06021 SUJAN CHAUDHARY 档 11 52-01-76-02156 Manoj Rijal 党 16 52-01-76-02455 KSHITIZ DASAUDI 党 17 52-06-77-00333 NUM BAHADUR PUN MAGAR 党 18 52-02-78-02005 Sulav Subedi 党 19 52-02-77-01808 Yaga Raj Bhatta 党 20 76-01-78-00720 TOPJUNG BUDHA DANG 21 52-06-78-00895 PAWAN MAGAN DANG 22 52-01-75-05550 BHIM GHARTI DANG 23 52-06-06-77-02984 -02-76-05315 BAL KRISHNA KHADKA DANG 27 52-01-79-00040 GOPAL MAGAR DANG 28 52-01-77-04045 ROSHAN GHARTI MAGAR DANG 29 52-78-06-78-05205 SUVADHARY DANG 30 52-06-76-03578 Pawan Budha Magar 党 31 52-02-76-02178 Nischal Buda Magar 党 32 52067803740 Ramesh Budha Magar 党 33 52-06-78-03471 Bipin Budha Magar 党 34 52-02-76-03469 Nischal Gharti Magar 党 35 52-02-77-03763 Khum Bahadur Pun 党 36 52-01-78-00618 Jhagraj Rana 党 37 52-01-78-02645 ANISH THAPA 党 38 52/01/75/03800 SUDHAN BUDHATHOKI 党 39 52-01-78-02546 SURAJ NEPALI 党 40 52-01-75-00007 Basant Dhami 党 41 52-01-78-00520 Aayan Buddha 党
在大多数数据中心,性能可靠性常常通过将冷却装置提供的气流量设置为基本上超过 IT 设备所需的量来确保。这种过于保守的策略需要额外的能源支出,这必然导致大量的能源被冷却系统浪费。为了避免采取此类浪费政策,进行气流、温度和能源管理至关重要。为此,本工作提出了一种新颖的方法,用于开发非设计条件下的紧凑型 IT 设备模型。该模型旨在支持数据中心的热能和能源管理功能。该模型的优点在于它不仅可以准确预测 IT 设备的功耗,还可以准确预测设备所需的流量和离开设备的空气温度。虽然紧凑型机型的功耗取决于 CPU 利用率,但其流量需求和排气温度却与 CPU 利用率无关。
信息机制。计算的基础和物理方面。细胞自动机理论。互连复杂性,同步。正式的计算模型与微观物理学(均匀性,位置,可逆性,惯性和其他保护原理,计算的变异,相对论和量子方面)一致。证明了可逆细胞自动机(1977)的计算通用性;提出了猜想(后来由卡里证明),所有可逆细胞自动机在结构上都是可逆的(1990)。介绍了“ to o oli Gate”(1981),后来被Feynman和其他人作为量子计算的基本逻辑原始词。提出,与弗雷德金(Fredkin)提出了第一个具体指控的计算计划(1980),这是近年来低功率行业所采用的想法。证明了耗散性细胞自动机算法可以用非解剖性晶格气体算法取代(2006– 2009年)。量子信息理论和热力学的进步(2006-2010)。批量计算的可及性;拉格朗日动作与计算能力之间的联系(1998-)。细粒体系结构,用于大规模并行计算。关于蜂窝机器机器的开创性工作:设计,实现,支持和应用(1982)。的开发和实现(与诺曼·玛格鲁斯(Norman Margolus)的CAM 8(一种精细的,难以扩展的多处理器体系结构)体现了可编程物质的概念(1987-1993)。微观动力学过程与宏观现象学之间的联系。在伴侣科学模拟中使用这些体系结构的方法以及探索各种平行计算方案。与TED Bach(2002-04)一起设计和实现SIMP/Step,软件引擎和IDE的IDE和IDE。discrete模型;开创了晶状体气体流体动力学的想法(1985)。对应原理是微观组合和宏观计算特性的;紧急计算。物理建模方法,利用了大量平行的,细粒度的计算资源。神经网络的某些方面。基于细粒度的自主动力学(1995)的图像操纵和三维渲染。微观动力学对模式识别:模拟染色,纹理锁定环。知识结构。作为旨在开发知识工程课程的电子书的一部分,创建并教授了新的研究生课程“个人知识工程”(2007-09)。与BU Earlab在大脑建模项目(2002- 2008年)合作。工作(自1998年起)开展了一项称为个人知识结构的倡议,旨在使普通人有效地利用计算机扩展其个人能力,这是识字的扩展。该策略是开发一套综合的文化和计算机资源,并建立一个试点社区,以支持和传播该学科。
ououlu应用科学射线学大学射线照相和放射治疗学位课程:WiiviRöning论文名称:脑循环成像路径路径工作主管:KaroliinaPaalimäkiki-Pääkkikki大学和讲师päiviErkkilä工作中心和一年:一般的死亡原因,这是一个重要的因素。脑血管疾病包括几种血管和循环系统疾病,例如脑梗塞,脑血管出血,瞬时脑血管事故和Sinustrombo。脑血管疾病在临床图像中非常相似,尽管它们的作用机理差异很大。由于作用的不同机制,治疗方法也不同。需要正确的诊断才能选择正确的治疗方法,其中医学成像起着重要作用。计算机断层扫描和磁成像是用于诊断脑血管疾病的主要使用成像方法。该研究的目的是该研究的目的描述脑血管疾病的成像路径,重点是成像在诊断中的重要性。该论文的重点是不同成像方案的资格,以作为怀疑脑血管事故的诊断工具。作品回答了两个研究问题:1。如何描述脑血管事故的怀疑和2。为什么这些成像方法适用于脑血管事故。描述性文献综述被用作研究方法。从三个数据库(PubMed,EBSCCO和Medic)中总共寻求了167篇研究文章,这些数据库根据标题,摘要和整个文本进行了筛选,留下了10项研究。研究结果表明,脑血管疾病的主要成像方法是对头部的本地CT研究。本研究使您可以在必要时立即开始治疗。其他计算机断层扫描研究和磁成像用于获取其他信息。该论文可以用作X射线护理学生的信息包,并作为进一步研究的地面调查。这项工作可用于进行互补研究,该研究更加重视脑血管事故的特定成像方法。关键字:脑血管疾病,脑梗塞,脑出血,瞬态脑血管事故,Sinustrombosis,计算机断层扫描,磁共振成像
(1)(Kokuken)日本科学技术局研究与发展战略中心,“战略建议:每个人的量子计算机”,2018年。 https:// wwwjst.go.jp/crds/pdf/2018/sp/crds-fy2018-sp-04.pdf(2)p.w.Shor,“用于量子计算的算法:离散日志和保理”,Proc第35届IEEE计算机科学序言研讨会,第124-134页,1994年。(3)L.K.Grover,“用于数据库搜索的快速量子机械算法”,第28 ACM计算理论座谈会论文集,第212-219页,1996年。(4)N。Kunihiro,“代理量计算机的计算时间的精确分析”,IEice Trans基础,第88-A卷,第105–111页,2005年。(5)M.A。nielsen和I.L.chuang,量子计算和量子信息,剑桥大学出版社,2000年。(6)A。Peruzzo,J。McClean,P。Shadbolt,M.-H周,P.J。Love,A。Aspuru-Guzik和J.L.O'Brien,“光子量子处理器上的变异特征值求解器”,《自然通信》,第5卷,第1期,2014年7月,第4213页(7)to奥利T.可逆计算,在:de bakker J.,van leeuwen J.(eds)自动机,语言和程序 - iCalp 1980,计算机Sci-Ence中的讲义,第85卷,Springer,柏林(8)Arxiv e-Prints,Quant-PH/9902 062,1999年2月。(9)K。Iwama,S。Yamashita和Y. Kambayashi,“设计基于CNOT的量子CUITS的跨形成规则”,设计自动化会议,第419-429-2002页,2002年。(10)Z. Sasanian和D.M.(12)M。Soeken,M。Roetteler,N。Wiebe和G.D. Micheli,“基于LUT的层次可逆逻辑Synthe-Sis”,IEEE TransMiller,“可逆和Quan-Tum电路优化:一种功能性方法”,《可使用的计算》第4个国际研讨会(RC 2012),第112-124页,2013年。((11)A。Mishchenko和M. Perkowski,“快速的启发式启发式最小化 - 独家及产品或产品”,第五届国际式Reed-Muller Workshop,pp.242–250,2001。计算。集成。电路系统,第38卷,第9期,第1675–1688页,2019年。((13)E。Souma和S. Yamashita,“同时分解许多MPMCT大门时,减少T计数”,第50届国际多重逻辑国际研讨会(IS- MVL 2020),第22-22-27页,11月2020年,((14)X. Zhou,D.W。 Leung和I.L.Chuang,“量子逻辑门结构的方法论”,物理。 修订版 A,第62卷,052316,2000年10月。 ((15)A。Barenco,C.H。 Bennett,R。Cleve,D.P。 Divincenzo,Chuang,“量子逻辑门结构的方法论”,物理。修订版A,第62卷,052316,2000年10月。((15)A。Barenco,C.H。Bennett,R。Cleve,D.P。 Divincenzo,Bennett,R。Cleve,D.P。Divincenzo,
M.,Oukem-Boyer,O.,B.,Owen,A.,Owolabi,M.O.,Owolabi,L.,Owusu-Dabo,E.,Pare,G. J. Sidibe,I。,I。 O.,Tayo,
