英国频道是东北大西洋地区最高的长期鱿鱼着陆点,使鱿鱼成为该地区运作的塞尔萨尔遗迹所利用的最有价值的资源之一。该资源由两个短寿命的长鱿鱼物种:loligo forbesii和L. vulgaris组成,它们的外观相似(它们没有被钓鱼者区分开),但在其生命周期的时间上有所不同:在L. forbesii中,在7月,在L. dufgaris招募的招聘峰会出现在L. dufgaris peak in Nevember中。头足类物种(例如Loligo spp。)的丰度和分布取决于有利的环境条件,以支持生长,繁殖和成功募集。This study investigated the role of several environmental variables (bottom temperature, salinity, current velocity, phosphate and chlorophyll concentrations) on recruitment biomass (in July for L. forbesii and November for L. vulgaris ), as based on environmental data for pre-recruitment period from the Copernicus Marine Service and commercial catches of French bottom trawlers during the recruitment period over the years 2000 to 2021.为了说明环境描述符与生物响应之间的非线性关系,将一般添加剂模型(GAM)拟合到数据中。在各自的招聘期内,获得了单独的模型,以预测法拉克利斯和福布西生物量指数。这些模型解释了生物量指数变化的很高比例(L. forbesii为65.8%,而福尔加里(L. vulgaris)的差异为56.7%),并且可能适合预测资源的丰度(以生物量)和空间分布。此类预测是指导经理的理想工具。由于这些模型可以在开始季节开始前不久进行,因此它们的常规实施将在实时填充管理中进行(由与短寿命物种打交道的薄薄的科学家促进)。
分子疗法使用基于核酸的治疗剂,成为对传统药物方法无反应的疾病条件的有前途的替代方法。反义寡核苷酸(ASO)和小干扰RNA(siRNA)是用于调节基因表达的两种众所周知的策略。靶向RNA的疗法可以精确地调节目标RNA的功能,具有最小的脱靶效应,并且可以基于序列数据进行合理设计。ASO和基于siRNA的药物具有在目标患者群体中使用的独特功能,或者可以作为患者抑制的N-ef-1治疗方法量身定制。反义疗法不仅可以用于治疗单基因疾病,而且还可以通过靶向涉及疾病发病机理的关键基因和分子途径来解决多基因和复杂疾病。在内分泌疾病的背景下,分子疗法在调节病原机制(例如缺陷胰岛素信号传导,β细胞功能障碍和激素失衡)方面特别有效。此外,siRNA和ASO具有下调过度活跃的信号传导途径,这些信号传导途径有助于复杂的,非发育性内分泌疾病,从而以分子起源解决这些疾病。ASOS还在全球范围内被研究为开发N-1-1疗法疗法的独特候选者。当寡核苷酸可以靶向患者的精确突变序列时,序列 - 特异性ASOS结合在N-OF-1方法中提供了非凡的精度。在这篇综述中,我们专注于内分泌系统的疾病,并讨论包括单基因β细胞糖尿病和肥胖症在内的糖尿病中潜在靶向RNA的治疗机会,包括综合征肥胖
摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。
通过攻击害虫或其他机械损伤释放出一种假定的伤口激素,该激素在整个植物中释放出诱导叶子以引发叶子来引发合成并积聚两个丝氨酸内肽酶的蛋白质含量(1)。该蛋白酶抑制剂诱导因子(PIIF)一直与大小变化的多糖始终相关(2),这表明PIIF活性可能与特定的糖序或结构固有。最近,MR 5000- 10,000的高活性番茄PIIF部分被证明是果多糖。它的位置类似于酶促产生的nicamore细胞壁的碎片,该薄膜壁是200,000的MR,其具有与番茄PIIF相似的效率(3)。该证据表明PIIF活性可能与植物细胞壁的结构成分有关。但是,鉴于大小的大小。番茄果果多糖和nicamore细胞壁碎片均可质疑它们在体内受伤后是否会通过植物血管系统迅速运输。- 在这种交流中,我们报告了一种纯galactu -ronase纯化。真菌根瘤菌(4)将番茄piif降解为寡糖,当蛋白酶抑制剂I的活性诱导剂提供给切除的番茄叶时。我们还表明,部分纯化的两个末代乳乳糖酶的混合物。番茄水果,将番茄PIIF和纯化的番茄细胞壁降解为PIIF活性寡糖。这些结果表明,细胞损伤在体内产生的PIIF活性位于植物细胞壁的小水解碎片中。
炎症反应是对防御病原体的先天免疫力的重要组成部分。传染性囊泡疾病(IBD)是鸡最重要的免疫植物疾病,是由传染性囊泡病毒(IBDV)引起的。急性炎症是IBD的典型致病过程,但是,基本机制尚不清楚。在这里,我们报告IBDV在体内和体外诱导明显的炎症反应。此外,病毒VP2被确定为重要的炎症刺激。可以观察到IBDV VP2可以激活NF-κB信号通路,然后增加IL-1β的产生。详细说,IBDV VP2与髓样分化的主要反应基因88(MyD88)相互作用,增强了MyD88的低聚和MyD88复合物的组装,这是导致NF-κB信号激活和IL-1β产生的一个重要元素。更有意义地,残基253/284的病毒VP2通过调节VP2和MYD88之间的动作强度以及以下MYD88-NF-κB-κB-IL-1β信号通路,通过调节VP2和MYD88之间的相互作用强度,参与IBDV诱导的炎症反应。这项研究揭示了一种触发IBDV感染期间炎症的分子机制,这对于更深入地了解IBDV的致病机制具有重要意义。
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
亚硝酸盐氧化细菌(NOB)是重要的硝酸盐,其活性调节了亚硝酸盐的可用性,并决定了生态系统中氮损失的幅度。In oxic marine sediments, ammonia- oxidizing archaea (AOA) and NOB together catalyze the oxidation of ammonium to nitrate, but the abundance ratios of AOA to canonical NOB in some cores are signi fi cantly higher than the theoretical ratio range predicted from physiological traits of AOA and NOB characterized under realistic ocean conditions, indicating that some NOBs are yet to be发现。在这里,我们报告了硝基氨叶甲状腺素的细菌门,其成员比规范的NOB更丰富,并且在整个全球寡营养沉积物中广泛存在。ca。硝基氨基甲酸糖构件具有氧化亚硝酸盐的功能潜力,此外还具有其他辅助功能,例如尿素水解和硫代硫酸盐还原。虽然一个回收的物种(Ca。硝基氨基甲磷酸菌)通常在塞毒区内构建,另一个(Ca。硝基氨基甲状腺素)还出现在缺氧的沉积物中。计数CA。 硝酸二氨基糖作为亚硝酸盐氧化剂有助于解决氧化海洋沉积物中AOA和NOB之间明显的丰度失衡,因此其活性可能对亚硝酸盐预算施加控制。计数CA。硝酸二氨基糖作为亚硝酸盐氧化剂有助于解决氧化海洋沉积物中AOA和NOB之间明显的丰度失衡,因此其活性可能对亚硝酸盐预算施加控制。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.28.640804 doi:biorxiv preprint
1加州大学欧文分校生物医学工程系,CA 92617,美国2,2复杂生物体系中心,加利福尼亚大学,欧文分校,CA 92697,美国,3,CHAO合成生物学中心,Chao家族综合综合癌症中心发育和细胞生物学系,加利福尼亚州,美国4.26体质de l'ecole normale sup´erieure,ENS,Universit´e PSL,CNRS,Sorbonne Universit´e,Universit´e Paris cit´e,巴黎,法国,法国,5 Kusuma生物科学学院,印度技术学院,印度技术研究所,德里,德里,110016,印度110016,印度,6个小型Biosystems,facelent de deaada de de la d de la de de de de de de de de la sica de la sica, F´ısica,巴塞罗那大学,Carrer de Mart'i franqu`ies,1,08028西班牙巴塞罗那,7纳米西亚Institut de Nanotecnologia I nanotecnologia(IN2UB),巴塞罗那大学,佩尔纳尼亚州98028 pa Barcelona,98028 pa niia pa pan pa niia pa niia pa niia pa Institut de Biologie de l'´ Ecole Normale sup´erire(Ibens),CNRS,Insers,´Ecole Normale Sup´erieure,PSL研究生,F-75005,F-75005,法国,法国,10化学和生物化学系,加利福尼亚Los Angelles,Los Angelles,Los Angelles,Ca 90095法国1加州大学欧文分校生物医学工程系,CA 92617,美国2,2复杂生物体系中心,加利福尼亚大学,欧文分校,CA 92697,美国,3,CHAO合成生物学中心,Chao家族综合综合癌症中心发育和细胞生物学系,加利福尼亚州,美国4.26体质de l'ecole normale sup´erieure,ENS,Universit´e PSL,CNRS,Sorbonne Universit´e,Universit´e Paris cit´e,巴黎,法国,法国,5 Kusuma生物科学学院,印度技术学院,印度技术研究所,德里,德里,110016,印度110016,印度,6个小型Biosystems,facelent de deaada de de la d de la de de de de de de de de la sica de la sica, F´ısica,巴塞罗那大学,Carrer de Mart'i franqu`ies,1,08028西班牙巴塞罗那,7纳米西亚Institut de Nanotecnologia I nanotecnologia(IN2UB),巴塞罗那大学,佩尔纳尼亚州98028 pa Barcelona,98028 pa niia pa pan pa niia pa niia pa niia pa Institut de Biologie de l'´ Ecole Normale sup´erire(Ibens),CNRS,Insers,´Ecole Normale Sup´erieure,PSL研究生,F-75005,F-75005,法国,法国,10化学和生物化学系,加利福尼亚Los Angelles,Los Angelles,Los Angelles,Ca 90095法国