美国通用服务管理局(GSA)与美国能源部合作,正在评估GSA库存中联邦拥有建筑物中建筑物综合光伏(BIPV)日光展的现实性能。该技术将由体外建筑玻璃和Oldcastle建筑信封提供,并与对该技术的其他持续评估进行协调。
摘要:针对为带有电动汽车的住宿建筑提供电力的光伏/电池系统,对几种复杂程度不断增加的能源管理策略在成本效益方面进行了比较。实施了有或没有生产预测的基于规则的控制方法,并将其与用作参考的线性规划策略进行了比较。最简单方法和参考方法之间的增益改进约为 27%。看来电池循环次数差别很大(高达 55%),导致或多或少快速老化。因此添加了电池退化模型,并在策略收益中引入了相应的成本。结果取决于初始电池成本,会受到显著影响,从而改变控制策略的相关性。15
电子邮件地址:paul.ortiz@univ-lorraine.fr (Paul Ortiz)、s.kubler@univ-lorraine.fr (Sylvain Kubler)、eric.rondeau@univ-lorraine.fr (Éric Rondeau)、jean-philippe.georges@univ-lorraine.fr (Jean-Philippe Georges)、G.Colantuono@leedsbeckett.ac.uk (Giuseppe Colantuono)、A.Shukhobodskiy@leedsbeckett.ac.uk (Alexander Alexandrovich Shukhobodskiy)
R.Power 是欧洲领先的独立可再生能源生产商,业务遍及波兰、罗马尼亚、意大利、葡萄牙、西班牙和德国。该公司专门开发公用事业规模的太阳能发电厂、储能系统 (BESS) 和风力发电场。R.Power 的业务涵盖整个可再生能源价值链,包括项目开发、建设(工程、采购和建设)、工厂运营和维护 (O&M) 以及作为独立电力生产商 (IPP) 的可再生能源生产。该公司目前拥有一系列运营和在建项目,总容量超过 1 GW,以及 7 GW 具有安全电网连接条件的项目,计划在未来 3 到 4 年内开发。此外,R.Power 正在推进总容量接近 30 GW 的项目。通过其子公司 Quanta Energy,R.Power 还提供
大型的,安装的光伏太阳能项目(GPV)在全球范围内迅速扩展,这是由于它们在缓解气候变化中的重要作用以及向低碳经济的过渡。随着全球跟踪系统的预计,到2050年,预计每年将每年增加32%的能力,了解其生态影响,包括其运营和管理(O&M)的生态影响,但仍在研究中。这项研究介绍了通过常规割草管理的传统单轴GPV中微气候和植被镶嵌物的首次全面评估。在加利福尼亚州的大中央山谷(美国)中,我们开发了一个新型的实验框架,以表征五个不同的“微观点”,该框架捕获了由跟踪PV系统和O&M调制的小气候和植被区域的完整范围。在一个12个月的时间内,我们监视了这些微斑点上的9个上下地下微气候变量和16个植物生态指标。在PV面板下,光合活性辐射降低了89%,风速降低了46%,而GPV足迹内的开放空间显示出更大的土壤表面温度(+2.4°C),并且在干旱期间表现出加速的水分损失(+8.5%)。此外,PV面板旋转全天影响着阴影模式,从而导致空气温度和蒸气压力不足的时间变化。植物调查确定了37种,其中86%是非本地的。显着跨微观植被的差异表明GPV驱动植物群落组成,结构和生产力的变化。与开放空间相比,PV阵列占地面积附近和内部的植被显示出更大的物种丰富度(+8.4%),最高高度(+21%),减少阳光植物的覆盖率(-71%)(-71%)以及较少的死亡生物量积累(-26%),来自阴影驱动的效果。这些发现表明,考虑了微分特定的维护策略和基于自然的解决方案,以控制侵入性,外来的植物物种,赋予增强运营,生态和社会经济可持续性的机会,同时恢复气候变化和生物多样性损失的双胞胎危机。
爱尔兰可持续能源局 SEAI 是爱尔兰的国家能源局,负责投资并提供适当、有效和可持续的解决方案,帮助爱尔兰过渡到清洁能源的未来。我们与房主、企业、社区和政府合作,通过专业知识、资金、教育计划、政策建议、研究和新技术开发来实现这一目标。SEAI 由爱尔兰政府通过通信、气候行动和环境部资助。© 爱尔兰可持续能源局 家用太阳能光伏计划 家用太阳能光伏计划在微型发电支持计划 (MSS) 下运作,并为房主购买和安装太阳能光伏系统提供补助。这采取一次性付款的形式,根据安装符合计划要求的产品向房主付款。本文档描述了计划下合格系统必须满足的要求。 版本控制
I。i ntroduction浓缩光伏(CPV)技术依赖于阳光的浓度在小(通常是mm 2至cm 2)和高效(III-V基于III-V的,通常为三连接)的细胞上。但是,这种技术成本仍然太高,无法被广泛采用。一种新兴方法包括微型化模块维度(Micro-CPV)。亚毫米多插根单元是这种创新技术的核心,因为它们可以克服使标准CPV不受欢迎的某些局限性。低温操作是高电性能和提高可靠性的关键。由于其较小的尺寸,可以用微型细胞提供更轻松的热管理策略[1]。此外,较小的细胞显示出较小的电阻损失,因此在非常高的浓度下,在理论上可以实现较高的效率。
摘要 — 评估了金刚石 pn 结贝塔伏特电池能量转换效率的温度依赖性。我们制造了伪垂直金刚石 pn 结二极管,并表征了其在 5-300 K 电子束辐照下的能量转换效率。金刚石 pn 结二极管在 150-300 K 时的能量转换效率为 18-24%,是硅 PiN 二极管的两倍多。另一方面,在 100 K 以下,由于金刚石的串联电阻增加,二极管的能量转换效率显着下降。在 150K 以上,金刚石 pn 结二极管的能量转换效率的温度依赖性小于硅二极管,这将使金刚石 pn 结贝塔伏特电池成为一种有前途的装置,用于在除低温区域以外的宽温度范围内进行遥感设备的能量收集。
摘要。使用多种能源抽水是偏远或干旱地区供应饮用水的理想解决方案。本文介绍了一种用于农业的独立光伏电池抽水系统的有效控制和能源管理策略。该系统由光伏太阳能电池板作为主要能源,铅酸电池作为次要能源,为无刷直流电机和离心泵供电。能源管理策略使用智能算法来满足电机所需的能量,同时将电池的充电状态保持在安全范围内,以消除电池完全放电和损坏。漂移是光伏系统中的一个主要问题;当太阳辐射快速变化时,就会发生这种现象。经典的 MPPT 算法无法解决这个问题,因此实施了改进的 P&O,与传统的 P&O 相比,所得结果显示了该算法的效率。计算机模拟结果证实了随机气象条件下所提出的能量管理算法的有效性。关键词:能量管理策略、光伏发电机、MPPT、改进的P&O、DC-DC转换器、电池、无刷直流电机、离心泵。
本文重点研究了基于模型预测控制 (MPC) 的智能微电网能源调度,该微电网配备不可控(即具有固定功率分布)和可控(即具有灵活和可编程操作)电器、光伏 (PV) 电池板和电池储能系统 (BESS)。所提出的控制策略旨在同时优化规划可控负载、共享资源(即储能系统充电/放电和可再生能源使用)以及与电网的能源交换。控制方案依赖于迭代有限时域在线优化,实施混合整数线性规划能源调度算法,以在随时间变化的能源价格下最大化太阳能自给率和/或最小化从电网购买能源的每日成本。在每个时间步骤中,解决由此产生的优化问题,提供可控负载的最佳运行、从电网购买/向电网出售的最佳能源量以及 BESS 的最佳充电/放电配置。