摘要:镀锌是防锈的关键工业过程,产生了含有重金属和其他污染物的废水,带来了环境和健康风险。这项研究评估了联合石灰阴离子聚丙烯酰胺(PAM)治疗的有效性,以减少南非豪登省镀锌行业产生的废水中这些污染物的有效性。流出样品并分析重金属(CD,CR,Cu,Pb,Zn,Mn,Fe)和物理化学参数,包括使用标准方法,包括电导率,氯化物和pH。未经处理的废水表现出高水平的重金属,尤其是铅,锌,锰和铁,远远超过了局部排放限制。治疗后分析显示,金属浓度大幅降低,达到了调节标准,pH值调整至金属氢氧化物沉淀的最佳水平。此外,将氯化物浓度从14,383.24 mg dm -3降低至3,890.40 mg∙dm -3,并从130.50至21.10μs -cm -1降低。尽管有这些改进,但对于氯化物的值仍然超过了市政当局的排放限量为500 mg dm -3,电导率为0.1μs∙cm-1,表明残留的高离子浓度。虽然石灰-PAM治疗有效提高了废水质量,但结果表明需要补充治疗以完全遵守严格的调节标准。总体而言,石灰-PAM方法显示出降低重金属和物理化学污染物减少镀锌流出物质的潜力。但是,建议进一步优化和整合高级治疗技术以提高功效并确保环境合规性。
Nahyun Shin、Moonsu Kim、Jaeyun Ha、Yong-Tae Kim、Jinsub Choi。柔性阳极 SnO2 纳米多孔结构均匀涂覆聚苯胺,作为锂离子电池的无粘合剂阳极。《电分析化学杂志》,2022 年,914,第 116296 页。�10.1016/j.jelechem.2022.116296�。�hal-03688072�
聚苯胺纳米颗粒的电沉积作为超级电容器应用的高性能电极Radhika S. Desai 1,Vinayak S. Jadhav 1,Divya D LAD 1,Pramod S. Patil 2,3和Dhanaji S. Dalavi 1,Dhanaji S. Dalavi 1,*抽象导电聚合物的大量关注能量存储材料,以吸引能量存储材料。在这项研究中,我们提出了一种直接且无结合的方法,用于在钢基材上进行聚苯胺(PANI)膜的电沉积。通过优化沉积时间,我们成功合成了Pani纳米颗粒,从而导致了独特的形态和电化学特性。全面的结构和物理化学表征表明,在最佳沉积时间制备的Pani 15薄膜在1 M硫酸(H₂SO₄)电解质中以10 mV s -1的扫描速率显示出632.56 F G -1的显着特异性电容。这项研究展示了一种实用的方法,用于设计和合成高级电极材料,为增强储能应用中的性能铺平了道路。我们的发现强调了电沉积PANI膜作为超级电容器和其他相关技术的有效材料的潜力。
摘要:目的:热休克蛋白70(HSP70)家族是一组高度保守的分子助力者,对于维持细胞稳态必不可少。这些蛋白质对于蛋白质折叠,组装和降解是必需的,并且涉及从应力条件中恢复细胞。HSP70蛋白质因热休克,氧化应激和致病性感染而上调。他们的主要作用是防止蛋白质聚集,重新折叠错误折叠的蛋白质以及靶向不可损害的蛋白质的降解。鉴于它们参与了基本细胞过程和应激反应,HSP70蛋白对于细胞存活和调节癌症,神经变性和其他病理的疾病结局至关重要。本研究旨在了解各种HSP70成员的主要结构,物理化学特性,磷酸化,泛素化和替代聚腺苷酸化位点预测。方法:SMART和Internoscan软件用于域分析。分别使用Protparam,NetPhos 3.1服务器DTU和Mubisida进行物理化学分析,磷酸化和泛素化站点分析。使用EST数据库研究了替代聚腺苷酸化。结果:域分析表明,某些HSP70成员中存在盘绕圈和核苷酸结合结构域。五个HSP70家庭成员在其3'UTR中具有替代的聚腺苷酸化位点。结论:确定工作为其结构,功能,相互作用组和聚腺苷酸化模式提供了宝贵的见解。研究其在癌症等疾病中的治疗潜力可能会有所帮助。
摘要。目标。分析在早期未分化的多关节炎(EUPA)同时,在24年内,类风湿关节炎(RA)的基线特征的变化(RA)的变化。方法。在基线时评估了在EUPA中募集的近期发作多关节炎的连续患者。连续三个期限定义了:(1)在生物制剂的一般性上(1998-2004; 245名患者)之前,(2)在2010年分类标准(2005-2010; 266例)和(3)最近的十年(2011-2022; 329患者)之前。结果。在基线,人口统计,BMI,肿胀和招标联合计数,履行2010年美国风湿病学院/欧洲风湿病学标准协会联盟,修改健康评估问卷,共享的表位状态,共享的表位状态,患者报告的疾病效果以及对疾病的疾病评估以及对疾病的疾病评估以及疾病的评估,以及疾病的评估。尽管有效吸烟显着降低(22.2%至12.1%),但心血管合并症的患病率和先前的癌症增加。尽管症状的持续时间从中位数增加到2.9个月,但在2005 - 2010年期间开始,血清效率下降(53.9%至42.2%)和C反应蛋白。仅在2011年之后才观察到侵蚀状态(Sharp/van der Heijde侵蚀得分≥5; 18.3%至9.4%)的大幅下降;这种降低主要发生在血清神经患者中。在纳入之前使用调整疾病的抗疾病药物保持较低和稳定(25.7%),但使用口服皮质类固醇增加(18%至33.4%)。结论。自2005年以来,RA患者的基线特征降低了血清阳性和较低的血液炎症,但合并症更多。基线时的严重侵蚀损害仅是自2011年以来才明显的,主要是在血清症患者中。在任何干预之前,基线时的这些变化表明,持续的世俗趋势可能会对早期RA患者的结局有利。
抽象背景是为了避免使用多轴伏锁板(VLP)进行远端半径骨折的骨质合成时,避免螺钉渗透到关节中,重要的是要注意,根据板位置,最佳螺丝插入角度。目的本研究的目的是2倍:第一,以评估最远端板块位置的差异,其中螺钉在三维(3D)半径模型中未渗透到关节中;其次,评估板位置与远端半径的横向直径之间的关系。患者和方法对健康手腕进行了30张普通X射线和计算机断层扫描(CT)扫描。横向直径在普通X射线上测量。3D半径模型是从CT数据中重建的。使用多轴VLP的3D图像研究在三个不同的螺钉插入角处最远端板块位置。测量了伏特关节边缘和板边缘之间的线性距离,并比较不同的螺丝插入角度。还评估了板位置与横向直径之间的相关性。另外,最远端螺钉位置和关节表面之间的关系与远端半径裂缝一起确定。结果,相对于中性的最佳位置在远端挥杆中为2.7 mm,在近端摆动中为1.9 mm。线性距离与每组的横向直径显着相关。这些结果可能是术前计划的参考。证据级别III。证实,最远端螺钉位置和关节表面之间的关系适用于实际情况。结论结果表明,多轴VLP的最远端位置取决于螺钉插入角,并且随着横向直径的增加而变得更加近端。
铁路通过交通,速度和负载在这些年来大大增加,促使行业利益相关者和研究人员寻求一种替代的卧铺材料,该材料可以证明其具有较高的在职弯曲抵抗力并具有环境友好和耐用的能力。为了满足这些需求,并且由于环境问题,KENAF增强的聚酰胺已变得非常重要。但是,由于其在这方面的性能不可用,因此无法用作铁路轨道组件。在弥合此差距时,本文着重于制造和表征处理过的六种不同配方的KENAF纤维(TKF,10%加载间隔时为0-50%),用于铁路卧铺应用。结果表明,TKF的掺入影响了聚酰胺在吸水,负载能力和热稳定性方面的行为。
物理材料科学的优先领域之一是开发基于耐热聚合物的新型聚合物复合材料。聚酰亚胺在耐热聚合物领域占据领先地位。目前,使用各种基于聚酰亚胺的材料。聚酰亚胺泡沫 ( PIF ) 广泛用于微电子领域,以生产介电常数非常低的电介质、传感器保护涂层、用于补偿振动载荷的应力缓冲器以及许多集成电路元件;由于其高热稳定性和耐热性以及防火性,它们还在航空航天中用作隔热、吸音和减震材料 [ 1 ] 。存在几种获取 PIF 的基本技术。最常见的过程是基于四羧酸酯与二胺的化学反应,其结果是形成相关的预聚物 [ 2 ] 。上述 PIF 生产方法的替代方法可能是在热处理聚酰胺酸 (PAA) 的水溶性铵盐的冻干物的过程中形成多孔聚酰亚胺结构的技术 [ 3 ] 。其独特之处在于无需使用表面活性剂或其他添加剂即可获得所需形状的各向同性泡沫材料,因为多孔结构是由于溶液冻结并随后水升华而形成的。然而,在这种情况下,泡沫材料性能的调节仅限于选择 PAA 盐溶液的浓度及其冻结条件。此外,控制性能的可能方法之一是引入各种填料 [ 4 ] 。在改善聚酰亚胺的热性能和机械性能方面特别令人感兴趣的是层状铝硅酸盐纳米颗粒 [ 5 ] 。在广泛使用的铝硅酸盐纳米颗粒中,有蒙脱石,其特点是可用性和高度各向异性。因此,本研究的目的是
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年8月26日发布。 https://doi.org/10.1101/2024.08.24.609500 doi:Biorxiv Preprint