近年来见证了一代和重建范式深入融合的趋势。在本文中,我们扩展了可控制的生成模块的能力,以实现更全面的手网恢复任务:在单个框架中,手工网格的生成,内部网状,重建,重建和拟合,我们将其命名为H olistic H和MESH R Ecovery(HHMR)。我们的主要观察结果是,具有强大多模式可偿还性的单个生成模型可以实现不同类型的手网恢复任务,并且在这样的框架中,实现不同的任务只需要给出不同的信号作为条件。为了实现这一目标,我们提出了基于图形卷积和整体手工网状恢复的注意力卷积和注意力机制的多合一扩散框架。为了实现强大的控制能力,同时确保多模式控制信号的解耦,我们将不同的模态映射到共享特征空间并应用跨尺度随机
毫米级、大面积均匀半导体器件分层用于物理故障分析和质量控制 Pawel Nowakowski*、Mary Ray、Paul Fischione EA Fischione Instruments,Export,宾夕法尼亚州,美国* 通讯作者:p_nowakowski@fischione.com 不断发展的微电子设备设计越来越复杂、越来越紧凑和越来越小。这些设计可能包括越来越多的层、三维 (3D) 垂直堆叠、气隙和不同的材料成分。大批量半导体器件制造需要强大的质量控制和故障分析过程。过去几十年来,已经开发出了许多故障分析技术,包括非破坏性和破坏性技术 [1-3]。一种非常流行的技术是器件分层,即从上到下控制地去除器件层。通过这种技术获得的信息可以支持质量控制、故障分析工作、成品和工艺改进数据以及逆向工程。
摘要。已经创建了多个软件框架,以帮助开发人员建模机器人应用程序。这些框架使用适合控制硬件组件(例如传感器和执行器)的低级编程结构,但在抽象复杂性方面受到限制。相反,代理编程语言支持使用更高水平的抽象来实现代理,但是这些语言主要仅限于软件代理的开发。在本文中,我们概述了将代理编程语言与机器人开发框架集成的体系结构和编程构造,以便使用高级抽象来编程自主机器人。由此产生的编程环境旨在使用自主认知剂的抽象来促进机器人对综合行为的建模。
Historical Overview ............................................................4 The Advent of Modern Robotics .........................................6 Evolution of Automation .....................................................7 Emergence of CNC Technology ........................................10 Technical Progress of CNC (Computer Numerical Control) .........................................................................10 Integration and Advancements ...................................................................................................................................................................................................................................................................................................................................................................................................................................
在脊椎动物中,甲状腺纤维蛋白是一种高度保守的糖蛋白激素,除了甲状腺刺激激素(TSH)外,它是TSH受体的有效配体。甲状腺激素被认为是其亚基GPA2和GPB5的最祖先糖蛋白激素和直系同源物,在脊椎动物和无脊椎动物中广泛保守。与TSH不同,甲状腺纤维蛋白神经内分泌系统的功能在很大程度上尚未探索。在这里,我们在秀丽隐杆线虫中确定了功能性甲状腺抑制蛋白样信号传导系统。我们表明,GPA2和GPB5的直系同源物以及甲状腺激素释放激素(TRH)相关的神经肽构成了促进秀丽隐杆线虫生长的神经内分泌途径。GPA2/GPB5信号是正常体型所必需的,并通过激活糖蛋白激素受体直立型FSHR-1来起作用。秀丽隐杆线虫GPA2和GPB5在体外增加了FSHR-1的cAMP信号传导。两个亚基均在肠神经元中表达,并通过向其神经胶质细胞和肠受体发出信号来促进生长。受损的GPA2/GPB5信号传导导致肠腔腹胀。此外,缺乏甲基抑制蛋白的信号传导的突变体显示出增加的排便周期。我们的研究表明,甲状腺激素GPA2/GPB5途径是一种古老的肠神经内分泌系统,可调节Ecdysozoans的肠道功能,并且可能在祖先中参与了对生物生长的控制。
相机曝光控制是通过控制曝光时间,增益和光圈来调整展示水平的任务,以达到给定场景的所需亮度和图像质量水平。调整较差的暴露参数导致暴露过度,暴露不足,模糊或嘈杂的图像,这可能会导致基于图像的应用程序中的性能降解,并且在最坏的情况下甚至是威胁生命的事故。因此,找到适当的相机暴露是确保计算机VI- sion应用功能的第一步,例如对象检测[5,16],语义分割[9,17],深度估计[10,26]和视觉传感器[1,13]。相机外观控制中有几个基本要求。必须保证快速收敛以在动态降低的情况下保持适当的暴露水平。此外,曝光控制环是相机系统中最低的循环之一。因此,必须考虑轻巧的算法设计用于车载级操作。最后,不应牺牲融合图像的质量以满足要求。此外,同时控制的参数数的数量也很重要,因为它会影响收敛时间和收敛图像的最终质量。单一控制方法[14,18,20]以一种方式控制暴露参数,以达到所需的暴露水平,而不是控制暴露参数。但是,收敛的参数通常不是最佳的,例如[长时间曝光时间,低增益]和[短曝光时间,高增益]对。结果,该值导致不良图像伪像,例如由于长时间的暴露时间或由于高增益而引起的严重噪声而导致运动模糊。关节曝光参数控制[7,8,8,21,23,24]通常需要在广泛的搜索空间中进行多个搜索步骤,以找到最佳组合。结果,它们会引起闪烁效果和缓慢的收敛速度。此外,由于其优化算法[7,8],图像评估指标[7,8,20,21]和GPU推论,因此需要高级计算复杂性[23]。在本文中,我们提出了一种新的联合暴露参数控制方法,该方法利用了增强学习来实现即时收敛和实时处理。所提出的框架由四个贡献组成:•简化的训练场,以模拟现实世界的di-verse和动态照明变化。•闪烁和图像属性感知奖励设计,以及用于实时处理的轻巧和直观的状态设计。•静态的动态照明课程学习,以提高代理的暴露能力。•域随机技术减轻训练场的限制并在野外实现无缝的一般性,而无需额外的训练。
将两 (2) 个 SPC810e 控制器模块安装到垂直 DIN 导轨上。将 SPC810e 控制器模块连接到冗余 HN800 I/O 总线。将 SPC810e 控制器模块连接到冗余 CW800 对等总线。为 PN800 控制网络提供四 (4) 个用于 100/1000 MB 以太网的 RJ45 连接器。
本研究设计并数值研究了一个新的热控制系统,用于用于航天器系统光学有效载荷的检测器。系统使用热电冷却器(TEC)作为维护冷手指在所需的设定点保持探测器温度的活性元件,使其在整个操作过程中保持在所需的范围内。该系统没有使用任何热管网络,而是使用附着在TEC热侧的辐射器将热负载耗散到环境空间环境中。使用有效属性的系统级建模用于对TEC的性能进行建模,而无需对任何内部复杂的几何形状进行建模。与温度相关的电流轮廓用作TEC的输入条件,因此TEC仅消耗所需的外部功率。研究了散热器的TEC设定点和几何参数的效果,并观察到,通过使用较大的设定点或具有较大尺寸的散热器,获得了功耗或提高性能系数的大幅度降低。该系统将进一步研究不同的热载荷和占空比(在100分钟的轨道周期内高达50%),以评估其在不同操作条件下的功效。还研究了该系统的连续操作周期,可以观察到,连续循环之间的循环误差最终将其变为零至零,因此表明在整个系统的整个生命中,都满足了连续的循环的温度控制要求。
本丛书涵盖了广义上运用知识和智能的系统和范例。其范围是具有嵌入式知识和智能的系统,这些系统可应用于解决工业、环境和社会中的世界问题。它还侧重于有效实现这一目标的知识转移方法和创新战略。智能系统工具和广泛应用的结合需要科学、技术、商业和人文学科的协同作用。本丛书将包括会议论文集、编辑合集、专著、手册、参考书和其他相关类型的书籍,涉及智能系统和技术可以提供创新解决方案的科学和技术领域。
pernambuco University of Pernambuco -UFPE的教育博士学位(2022年);佩南布科联邦大学教育硕士 - UFPE(2012)。 来自佩南布科联邦大学(UFPE)联邦大学体育教育学位(2009年)。 巴西环境杂志编辑委员会成员-RVBMA [巴西环境杂志](ISSN:2595-4431)。 公共卫生政策管理,体育和休闲实验室的研究员-UFPE(Labgespp/UFPE);体育扩展项目的合作成员(体育与体育科学中心-CAV/UFPE);体育和休闲政策研究发展中心的研究员 - Cedes Network-体育部。 体育本科课程教授 - Unibra。 联系电子邮件:edilson.santos@grupounibra.compernambuco University of Pernambuco -UFPE的教育博士学位(2022年);佩南布科联邦大学教育硕士 - UFPE(2012)。来自佩南布科联邦大学(UFPE)联邦大学体育教育学位(2009年)。巴西环境杂志编辑委员会成员-RVBMA [巴西环境杂志](ISSN:2595-4431)。公共卫生政策管理,体育和休闲实验室的研究员-UFPE(Labgespp/UFPE);体育扩展项目的合作成员(体育与体育科学中心-CAV/UFPE);体育和休闲政策研究发展中心的研究员 - Cedes Network-体育部。体育本科课程教授 - Unibra。联系电子邮件:edilson.santos@grupounibra.com