您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
需要在多年生果实和坚果作物中控制害虫的新型策略,因为由于对少数活性成分和调节性问题的过度依赖,目标害虫通常表现出对化学控制的敏感性降低。作为化学控制的替代方法,可以将昆虫病作用真菌用作生物控制剂来管理害虫群体。但是,缺乏基本知识会阻碍现有产品的开发。现成的产品的开发需要收集,筛查和表征更多潜在的昆虫病变真菌和菌株。创建一个标准化的研究框架来研究昆虫病变真菌,将有助于确定真菌可能具有的生物控制活性的潜在机制,包括抗生素代谢物的产生;最适合在不同气候和农业生态系统中生存的菌株和物种;并优化了昆虫病作用真菌和新型制剂的组合。因此,这项迷你综述讨论了收集和表征新的昆虫病毒菌株,测试生物防治活性的不同潜在机制,检查不同物种和菌株耐受不同气候的能力的策略,最后如何利用这些信息将这些信息开发为种植者的产品。
☐是否(否(否),大学(包括部门,实验室等)或机构可能参与大规模杀伤性武器等(核,化学,化学,生物学,火箭,无人驾驶飞机)或传统武器或技术上的高级材料,零件,或用于这些使用的产品?您的大学(包括其部门,实验室等)或机构是否有可能参与大规模杀伤性武器(核武器,化学武器,生物武器,火箭,无人驾驶飞机),常规武器或任何技术先进的材料,零件或产品,用于开发这些武器?
Laneless和无方向运动是高速公路网络中连接和自动化车辆(CAVS)的轨迹行为的新型特征。应用此概念可以利用高速公路的最大潜在能力,尤其是在分布不均的方向需求下。尽管如此,消除了在车道和方向的分离域上的传统概念,因此可以增加混乱的驾驶行为和碰撞风险(从而损害安全性)。因此,本文的重点是在这种未来派环境中为骑士的轨迹规划,其双重目标是(i)提供和确保安全性,而(ii)提高了绩效性能。为此,我们提出了一种骑士的算法,以区分潜在的冲突车辆与自己的方向和/或反对的传播流(整个本文档中所谓的威胁)在早期(及时)阶段。之后,威胁工具被聚集为威胁群体。作为下一步,开发了一个分散的非线性模型预测控制(NLMPC)框架,以调节每个单个威胁集群中车辆的运动;从这个意义上讲,这是分别应用于每个群集中的分布式控制器。该控制方法的设计方式可以实现上述双重目标,结合了官能安全性和效率。最后,通过微观仿真研究对所提出的方法的性能进行了研究和评估。结果是有希望的,并确认了公路网络所提出的方法的效果。
增材制造工艺起源于原型制造,并被称为快速原型制造,因为它们可用于快速制造样品部件。这意味着,除了现有工艺外,增材制造工艺还提供了另一种制造选择。每种制造工艺都有其特定的优势和劣势。在传统的制造工艺(例如机械加工)中,这些优势和劣势是已知的,并在设计和选择制造工艺时得到了适当的考虑。在增材制造工艺中,设计师在很大程度上仍然缺乏这种丰富的经验。与任何制造技术一样,增材制造也需要某些框架条件,以实现最佳的成本效益比。在未来,工业 3D 打印也将成为传统制造技术在技术上合理且经济的替代方案,用于某些制造任务。AM 尤其适用于小批量生产的复杂几何组件。
锂团队将继续设计和实施新的迭代,每年在内布拉斯加州林肯举行的FSAE电动汽车学生设计比赛。该项目包含电气车安全系统的开发以及高压电池和直流电动机系统的改进。拖流和控制系统的新设计将组装到先前版本的赛车上,包括PCB组件的变化,低压和高压电池,以及从刷子到无刷直流电动机的潜在交换。总体而言,锂团队旨在生产一个可以轻松制造和安全地享用消费者的电力赛车。
对于许多小型应用,如微电子元件、微型传感器和微系统,高容量冷却选项仍然有限。NASA 格伦研究中心目前正在开发一种微机电系统 (MEMS) 来满足这一需求。它使用热力学循环直接为热负荷表面提供冷却或加热。该设备可以严格在冷却模式下使用,也可以在几毫秒内切换冷却和加热模式,以实现精确的温度控制。制造和组装是通过半导体加工行业常用的湿法蚀刻和晶圆键合技术完成的。MEMS 冷却器的优点包括可扩展到几分之一毫米、模块化以提高容量和分级到低温、简单的接口和有限的故障模式,以及最小的诱导振动。
柠檬酸是全球经济和食品安全中的重要农业部门,但柑橘的障碍之一是疾病的发生,尤其是真菌起源的疾病。由青霉造成的绿色霉菌是橙色培养物(柑橘Sinensis)的主要后疾病,损失可达到90%。化学控制,使用杀菌剂是最常用的方法,可以最大程度地降低柑橘类属于柑橘类的影响。这项工作的目的是确定商业生物产品对a)橙色“梨”中绿模的严重程度的影响; b)在体外控制数字假单胞菌; c)水果的理化质量; d)评估抗性诱导。实验是在位于帕拉伊巴大学/CCA/校园II的植物病理学实验室(LAFIT)进行的。用典型的绿色霉菌症状从鼻梭化水果中分离出所使用的小假单胞菌。治疗由:T1:灭菌的蒸馏水(ADE)组成; T2:Natucontrol®(Trichoderma harzianum); T3:Shocker®(枯草芽孢杆菌); T4:Bio-Imune®(ayloliquefaciens and T. harzianum); T5:Ecotrich®(T。Harzianum); T6:Tricho-Turbo®(Trichoderma aspllum); T7:Auin-CE®(Beauveria bassiana); T8:MacCafé®(cladosporiumsp。); T9:罗密欧SC®(酿酒酵母); T10:杀菌剂(Tiabendazol- Benzimidazole)。处理的水果中绿色霉菌的严重程度降低了69%。,其中平均菌落直径(DM),菌丝体生长速率(IVCM),生长抑制(PIC)的百分比,并评估了(PIE)的繁殖抑制(PIE)。在先前损伤的西南梭状芽孢杆菌的果实中进行体内对照,并用椎间盘菌落的椎间盘接种。将水果经过潮湿室24小时,并每天评估绿色模具的严重程度。物理化学分析是:质量损失,壳牢固,可溶性固体含量,可滴定酸度,SS/AO比,pH和维生素C。酶活性酶活性对应于苯丙氨酸 - 氨基氨基症酶(PAL)(PAL),过氧化物酶(POX)和多酚氧化酶(PPO)。治疗增加了PAL,PPO和POX的活性。所有处理都显着降低了与证人不同的DM,IVCM,PIC和PIE。处理之间的pH和维生素C值有所不同。生物产品不会改变质量后质量参数。在体外和体内条件下,生物学处理,控制疟原虫,并减少橙色“梨”中绿色模具的严重程度。关键词:柑橘sinensis;抗性诱导; digitatum; thevest。
1型糖尿病(T1D)是一种免疫介导的疾病,其特征是胰腺内兰格汉(Langerhans)胰岛中产生胰岛素的B细胞的逐渐丧失(1)。胰岛素短缺导致血糖稳态的危险,这可能导致潜在的威胁生命的急性和慢性并发症(2)。自身免疫性破坏过程的触发器尚不清楚。T1D发病率在全球范围内正在上升,但存在着相当大的国家 - 国家差异,世界上某些地区的患病率远大于其他地区(3)。尚不清楚的原因,但是强烈怀疑遗传因素和环境因素之间的相互作用(4)。尽管T1D护理的进步取得了进步,但这种疾病仍与大量的医学,心理和财务负担有关。此外,低血糖和高血糖是持续存在的潜在威胁生命的并发症(5)。最近,居住在人类肠道的复杂微生物群落等环境变量(例如肠道微生物群)因其在T1D发病机理中的潜在作用而引起了人们的关注。人类的肠道微生物组在生命的第一年发展,其构成与成年人相似(6,7)。肠道微生物组和免疫系统发育的成熟是密切相关的过程(8)。根据Knip及其同事对肠道微生物组和T1D之间关系的研究,患有胰岛自身抗体的儿童更有可能具有更大的细菌/蛋白质比率和较低的Shannon多样性,而Shannon的肠道微生物组的多样性较低(9)。这些机制其他研究表明,具有T1D高风险的儿童具有相当大的菌群菌菌和菌菌(10)菌(10)的积累,并且与自身抗体阳性有关(11)。T1D患者的浓度较低,可产生乳酸和短链脂肪酸(SCFA)(12)。在T1D发作时也可以检测到乳酸杆菌数量减少和双杆菌的数量(13)。已经进行了几种横断面 - 对照调查揭示了T1D患者和健康对照组受试者之间肠道微生物组的差异。t1d儿童的细菌植物具有较大的细菌植物,并且两种主要的双杆菌种类的丰度降低(14)。一方面,Mejı́A-Leo n n和Barca比较了新诊断的T1D患者的肠道微生物组,长期存在T1D持续时间和健康对照的患者。发现新诊断的T1D患者具有较高水平的细菌,而健康的对照组的PREVOTELLA水平较高(15)。另一方面,只有少数研究研究了肠道微生物组在长期T1D中的作用(16)。肠道微生物组可能通过影响肠道通透性和分子模仿并调节先天和适应性免疫系统(17),在T1D发病机理中起关键作用(17)。但是,T1D中的肠道营养不良不仅可能起致病作用。的确,它可能会影响已经患有该疾病的个体的血糖控制。在2型糖尿病患者或健康受试者中进行的研究表明,肠道微生物群可以影响宿主血糖控制的几种提出的分子机制。